精英家教网 > 初中数学 > 题目详情
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y=
k
x
(k>0,x>0)的图象上,点P(m、n)是函数y=
k
x
(k>0,x>0)图象上的一个动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设两个四边形OEPF和OABC不重合部分的面积之和为S.
(1)求B点坐标和k的值;
(2)当S=
9
2
时,求点P的坐标.
(1)∵正方形OABC的面积为9,
∴OA=OC=3,
∴B点的坐标为:(3,3),
∵点B在函数y=
k
x
(k>0,x>0)的图象上,
∴k=xy=9;

(2)∵P(m、n)是函数y=
k
x
图象上的一个动点,
∴mn=k=9,
当S=
9
2
时,P点的位置有两种情况:
第一种:P点在B点的左侧,这时,
即m=
3
2
,n=6,
P点坐标为:(
3
2
,6);
第二种:P点在B点的右侧,这时s=3(n-3)+3(3-m)=18-6m=
9
2

即n=
3
2
,m=6,P点坐标为:(6,
3
2
),
综上所述,P点的坐标为(
3
2
,6)或(6,
3
2
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b与双曲线y=
4
x
在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4.
(1)求一次函数的解析式;
(2)根据图象指出不等式kx+b>
4
x
的解集;
(3)点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直线y=ax+b(a≠0)与反比例函数y=
k
x
(k≠0)
交于A、B两点,其中A(-1,-2)与B(2,n),
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积;
(3)若点C(-1,0),则在平面直角坐标系中是否存在点D,使得以A,B,C,D四点为顶点的四边形为平行四边形?若存在,请直接写出D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

结合所给的阅读材料,求解问题.
材料:在直角坐标系中,如果有两点A(a,b),B(a,0),那么称点B是点A在x轴上的射影.
问题:如图,测得飞机的运动曲线是双曲线,飞机在点M的坐标为(-4500
3
,1125),炮弹在点O处沿α角向飞机射击,在点N处命中目标,此时点N在x轴上的射影坐标为(-2250
3
,0),已知α=30°,炮弹飞行速度为750米/秒.
问:炮弹从发射到击中目标用了多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图y=-6x+6与坐标轴交于A、B两点,△ABC为等腰直角三角形,双曲线y=
k
x
(x<0)
过C点,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD(点A在第一象限)与x轴的正半轴相交于M,与y的负半轴相交于N,ABx轴,反比例函数的图象y=
k
x
过A、C两点,直线AC与x轴相交于点E、与y轴相交于点F.
(1)若B(-3,3),直线AC的解析式为y=ax+b.
①求a的值;
②连接OA、OC,若△OAC的面积记为S△OAC,△ABC的面积记为S△ABC,记S=S△ABC-S△OAC,问S是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.
(2)AE与CF是否相等?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是(  )
A.4
3
B.-4
3
C.2
3
D.-2
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在矩形A0BC中,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.E是边AC上的一个动点(不与A,C重合),过E点的反比例函数y=
k
x
(k>0)
的图象与BC边交于点F.
(1)若△OAE、△OBF的面积分别为S1、S2且S1+S2=2,求k的值;
(2)若OB=4,OA=3,记S=S△OEF-S△ECF问当点E运动到什么位置时,S有最大值,其最大值为多少?
(3)请探索:是否存在这样的点E,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲乙两名运动员在相同条件下各射击大次,成绩如图:(实线表示甲,虚线表示乙)
(c)分别求出两人射击命中的平均环数:甲______,乙______;
(2)分别求出两人的方差:甲______,乙______;
(3)根据图示算得的结果,你认为______的射击稳定性比较高.

查看答案和解析>>

同步练习册答案