精英家教网 > 初中数学 > 题目详情
15.定义:如图,点M,N把线段AB分割成三条线段AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.若AM=2,MN=3,则BN的长为$\sqrt{3}$或$\sqrt{15}$.

分析 分两种情况:①当MN为最大线段时,由勾股定理求出BN;②当BN为最大线段时,由勾股定理求出BN即可.

解答 解:分两种情况:
①当MN为最大线段时,
∵点 M、N是线段AB的勾股分割点,
∴BN=$\sqrt{M{N}^{2}-A{M}^{2}}$=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$;                      
②当BN为最大线段时,
∵点M、N是线段AB的勾股分割点,
∴BN=$\sqrt{M{N}^{2}+A{M}^{2}}$=$\sqrt{{3}^{2}+{2}^{2}}$=$\sqrt{13}$;
综上所述:BN的长为$\sqrt{5}$或$\sqrt{13}$.
故答案为:$\sqrt{3}$或$\sqrt{15}$.

点评 本题考查了新定义“勾股分割点”、勾股定理;理解新定义,熟练掌握勾股定理,进行分类讨论是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.如图,点M、N是线段AB的勾股分割点(勾股分割点定义:指M、N把线段AB分割成AM,MN,和BN.若以AM,MN,和BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点).现若已知AM=3,MN=4,则BN=5或$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.计算(1-$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$)×(-12),运用哪种运算律可以避免通分(  )
A.乘法分配律B.乘法结合律
C.乘法交换律D.乘法结合律和交换律

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图1,E、F是正方形ABCD的边AB及DC延长线上的点,且BE=CF,则BG与BC的数量关系是BG=$\frac{1}{2}$BC.
(2)如图2,D、E是等腰△ABC的边AB及AC延长线上的点,且BD=CE,连接DE交BC于点F,DG⊥BC交BC于点G,试判断GF与BC的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,点G为△ABC的重心,连接AG、BG并延长,分别交BC、AC于点D、E,过点E作EF∥BC交AD于点F,那么AF:AG=3:4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知y=$\sqrt{x-1}$+5$\sqrt{1-x}$+2,求xy的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.一次函数y=(m-3)x+n-2(m,n为常数)的图象如图所示,则化简:$\sqrt{(n-m)^{2}}$-$\sqrt{{n}^{2}-4n+4}$-|m-1|的结果为(  )
A.-2n+3B.-2m+3C.m-3D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某商店销售一种成本为40元/kg的水产品,若按50元/kg销售,一个月可售出500kg,售价毎涨1元,月销售量就减少10kg.
(1)写出月销售利润y(元)与售价x(元/kg)之间的函数表达式;
(2)当售价定为多少元时,该商店月销售利润为8000元?
(3)当售价定为多少元时会获得最大利润?求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.分解因式:a2-$\frac{1}{25}$=(a+$\frac{1}{5}$)(a-$\frac{1}{5}$).

查看答案和解析>>

同步练习册答案