【题目】如图,平面直角坐标系中,已知点,C为y轴正半轴上一点,连接PC,线段PC绕点P顺时针旋转
至线段PD,过点D作直线
轴,垂足为B,直线AB与直线OP交于点A,且
,直线CD与直线OP交于点Q,则点Q的坐标为______.
【答案】
【解析】
过点P作于E,EP的延长线交AB于F.首先证明△CPE≌△PDF,得到DF=PE=2,推出BD=BF+DF=4,由BD=4AD,推出AD=1,AB=OB=5,CE=PF=3,D(5,4),C(0,5),利用待定系数法求出直线CD的解析式,利用方程组即可求出点Q的坐标.
解:过点P作于E,EP的延长线交AB于F.
∵
∴ ,
∴ 四边形EOBF是矩形,
∵ P (2,2)
∴ OE=PE=BF=2,
∵ ,
∴ ,
,
∴ ,
在△CPE和△PDF中, ,
∴ △CPE≌△PDF,
∴ DF=PE=2,
∴ BD=BF+DF =4,
∵ BD=4AD,
∴ AD=1,AB=OB=5,
∴ CE=PF=3,
∴ D(5,4),C(0,5),
设直线CD的解析式为y=kx+b则有,解得
,
∴直线CD的解析式为,
由解得
,
∴点Q的坐标为.
故答案为:.
科目:初中数学 来源: 题型:
【题目】老师所留的作业中有这样一个分式的计算题:,甲、乙两位同学完成的过程分别如下:
老师发现这两位同学的解答都有错误.
(1)甲同学的解答从第 步开始出现错误,错误的原因是 ;
乙同学的解答从第 步开始出现错误,错误的原因是 ;
(2)请重新写出完成此题的正确解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.
(1)∠CBD=
(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=
(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,
,D在边AC上,且
.
如图1,填空
______
,
______
如图2,若M为线段AC上的点,过M作直线
于H,分别交直线AB、BC与点N、E.
求证:
是等腰三角形;
试写出线段AN、CE、CD之间的数量关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在综合与实践课上,同学们以“一个含的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线
且
和直角三角形
,
,
,
.
操作发现:
(1)在如图1中,,求
的度数;
(2)如图2,创新小组的同学把直线向上平移,并把
的位置改变,发现
,说明理由;
实践探究:
(3)缜密小组在创新小组发现结论的基础上,将如图中的图形继续变化得到如图,平分
,此时发现
与
又存在新的数量关系,请直接写出
与
的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组 的解,但不是方程x2﹣3x+2=0的实数解的概率为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知反比例函数 的图象经过点A(1,3).
(1)试确定此反比例函数的解析式;
(2)当x=2时,求y的值;
(3)当自变量x从5增大到8时,函数值y是怎样变化的?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,每个小正方形的边长为1,在方格纸内将△ABC经过一次平移后得到△A′B′C′,图中标出了点B的对应点B′.
(1)补全△A′B′C′根据下列条件,利用网格点和三角板画图:
(2)画出AB边上的中线CD;
(3)画出BC边上的高线AE;
(4)△A′B′C′的面积为 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于y轴对称的△ABlCl;
(2)点P在x轴上,且点P到点B与点C的距离之和最小,直接写出点P的坐标为______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com