精英家教网 > 初中数学 > 题目详情
13.如图,⊙O是△ABC的外接圆,AB为⊙O的直径,∠ACB的平分线交⊙O于点D,点E在CA的延长线上,且DE为⊙O切线.
(1)求证:AB∥DE;
(2)连接AD,若tan∠ADC=$\frac{1}{3}$,AC=4,求DE的长.

分析 (1)连结OD,如图,由于∠ACD=∠BCD,根据圆周角定理得$\widehat{AD}$=$\widehat{BD}$,则利用垂径定理有OD⊥AB,再利用切线的性质得OD⊥DE,于是可判断AB∥DE;
(2)作AH⊥DE于H,如图,根据圆周角定理得∠ACB=90°,∠B=∠ADC,在Rt△ACB中,利用∠B的正切可计算出BC=12,接着利用勾股定理可计算出AB=4$\sqrt{10}$,然后证明四边形AHDO为正方形得到AH=DH=OA=2$\sqrt{10}$,再证明Rt△AHE∽Rt△BCA,利用相似比可计算出HE=$\frac{2\sqrt{10}}{3}$,最后计算DH+HE即可.

解答 (1)证明:连结OD,如图,
∵∠ACB的平分线交⊙O于点D,
∴∠ACD=∠BCD,
∴$\widehat{AD}$=$\widehat{BD}$,
∴OD⊥AB,
∵DE为⊙O切线,
∴OD⊥DE,
∴AB∥DE;
(2)解:作AH⊥DE于H,如图,
∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠B=∠ADC,
∴tanB=tan∠ADC=$\frac{1}{3}$,AC=4,
在Rt△ACB中,∵tanB=$\frac{AC}{BC}$=$\frac{1}{3}$,
∴BC=3AC=12,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=4$\sqrt{10}$,
∴OA=OD=2$\sqrt{10}$,
∵OA∥DE,OD⊥OA,AH⊥DE,OA=OD,
∴四边形AHDO为正方形,
∴AH=DH=OA=2$\sqrt{10}$,
∵AB∥DE,
∴∠BAC=∠E,
∴Rt△AHE∽Rt△BCA,
∴$\frac{HE}{AC}$=$\frac{AH}{BC}$,即$\frac{HE}{4}$=$\frac{2\sqrt{10}}{12}$,
∴HE=$\frac{2\sqrt{10}}{3}$,
∴DE=DH+HE=2$\sqrt{10}$+$\frac{2\sqrt{10}}{3}$=$\frac{8\sqrt{10}}{3}$.

点评 本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了圆周角定理和相似三角形的判定与性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.两个位似多边形的一组对应边分别是35和14,它们的周长差是60,面积和是870,求这两个多边形的周长及面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.方程x2-2x-6=0的两根为x1、x2,则|x1-x2|=2$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知α,β为锐角,tanα=$\frac{1}{7}$,tanβ=2,利用如图所示的网格计算tan(α+β)的值为3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知A(-1,1)、B(2,-3),若要在x轴上找一点P,使AP+BP最短,此时点P的坐标为(  )
A.(0,0)B.($\frac{5}{2}$,0)C.(-1,0)D.(-$\frac{1}{4}$,0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.随着人们对健康认知度的提高,人们对食品的健康要求也越来越高,我市对食品安全检查的力度也越来越强.某一奶制品企业经销某种牛奶,已知每箱牛奶的成本为40元,其每个月的销量y(万箱)与销售单价x(元)的关系如下表所示(x为5的倍数,且x≤80元).
售价x
(元)
6065707580
月销量y
(万箱)
65.554.54
又已知该企业每月销售该种牛奶的总开支z(万元)(不含牛奶成本)与销量y(万箱)存在函数关系:z=10y+42.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出月销量y与售价x之间的函数关系式;
(2)当售价定为何值时,月销售利润最大?且最大是多少?
(3)到今年2月底止,该企业都在获得最大利润的基础上进行销售,从今年3月份开始,该企业为满足人们需要,积极响应市里号召,停止生产该种牛奶准备加工生产一种高优质牛奶,于是采取了一系列优化措施,其中添置生产处理设备共250万元,并增加安全技术人员50名,这样每月的总开支(不含牛奶成本)将比2月份增加5万元,而一箱牛奶的成本比原来增加了25%,但该企业为了促销新品种牛奶,3月份每箱牛奶的售价却比2月份下降了25%,3月的销量比2月增加了40%,到了4月份取消促销活动,每箱牛奶的价格在3月份的基础上增加了n%,销量在3月份的基础上增加了0.25n%,以这样的销售持续到5月底,则从2月到5月共获利润295万元,试估计n的整数值.(322=1024,332=1089,342=1156)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列正确结论的个数是(  )
①菱形的对边平行;
②菱形的对角相等;
③菱形的对角线垂直且平分;
④菱形是四条边相等.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.将点E(-3,-5)向上平移4个单位,再向右平移3个单位到点F,则点F的坐标为(  )
A.(1,-8)B.(1,-2)C.(-6,-1)D.(0,-1)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.若|x|=2,y=1,则x+y的值是(  )
A.2B.-1C.3D.3或-1

查看答案和解析>>

同步练习册答案