精英家教网 > 初中数学 > 题目详情
已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC精英家教网上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.
(1)求四边形AEOF的面积.
(2)设AE=x,S△OEF=y,写出y与x之间的函数关系式,求x取值范围.
分析:(1)先根据BC为半圆O的直径,OA为半径,且OA⊥BC求出∠B=∠OAF=45°,再根据全等三角形的判定定理得出△BOE≌△AOF,再根据S四边形AEOF=S△AOB即可得出答案;
(2)先根据圆周角定理求出∠BAC=90°,再根据y=S△OEF=S四边形AEOF-S△AEF即可得出答案.
解答:解:(1)∵BC为半圆O的直径,OA为半径,且OA⊥BC,
∴∠B=∠OAF=45°,OA=OB,
又∵AE=CF,AB=AC,
∴BE=AF,
∴△BOE≌△AOF
∴S四边形AEOF=S△AOB=
1
2
OB•OA=2.

(2)∵BC为半圆O的直径,
∴∠BAC=90°,且AB=AC=2
2

y=S△OEF=S四边形AEOF-S△AEF=2-
1
2
AE•AF=2-
1
2
x(2
2
-x)
∴y=
1
2
x2-
2
x+2(0<x<2
2
).
点评:本题考查的是圆周角定理、全等三角形的判定与性质、三角形的面积,涉及面较广,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O精英家教网于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧
AB
上,OM⊥DE于点M.试求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=
15

(1)求证:AM•MB=EM•MC;
(2)求sin∠EOB的值;
(3)若P是直径AB延长线上的点,且BP=12,求证:直线PE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在半径为8的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=2
15

(1)求证:
AM
EM
=
MC
MB

(2)求EM的长;
(3)求sin∠EOB的值.

查看答案和解析>>

同步练习册答案