精英家教网 > 初中数学 > 题目详情
(2004•盐城)如图1,E为线段AB上一点,AB=4BE,以AE,BE为直径在AB的同侧作半圆,圆心分别为O1,O2,AC、BD分别是两半圆的切线,C、D为切点.
(1)求证:AC=BD;
(2)现将半圆O2沿着线段BA向点A平移,如图2,此时半圆O2的直径E′B′在线段AB上,AC′是半圆O2的切线,C′是切点,当为何值时,以A、C′、O2为顶点的三角形与△BDO1相似?

【答案】分析:(1)如果设⊙O1的半径为R,⊙O2的半径为r,那么根据AB=4BE,可知R=3r.连接O1D,O2C,那么O1B=5r,AO2=7r,可在直角△BO1D中求出BD的长,同理求出AC的长,即可得出AC,BD的比例关系;
(2)本题要分两种情况进行讨论:
①当∠CAO2=∠B时,O2C,O1D和AO2,BO1分别对应成比例.设AE′=kAB,那么可用k,r表示出AE′的长,然后代入比例关系式中即可求出k的值.
②当∠CAO2=∠DO1B时,AO2,BO1和O2C,BD对应成比例,然后按①的方法即可求出此时k的值.
解答:(1)证明:连接O1D,O2C,设⊙O1的半径为R,⊙O2的半径为r,
则R=3r
在直角三角形BO1D中
∵BO1=5r,O1D=3r
∴BD=4r,
同理可求得AC=4r
∴AC=BD;

(2)解:设AE′=kAB,因此AE′=8kr
①当∠C′AO2=∠B时,,即
∴k=
②当∠C′AO2=∠BO1D时,,即
∴k=
时,以A、C′、O2为顶点的三角形与△BDO1相似.

点评:本题主要考查了勾股定理,相似三角形的判定和性质等知识点,要注意(2)中要按不同的相似三角形对应的成比例线段是不同的,因此要分类讨论.不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《数据分析》(03)(解析版) 题型:解答题

(2004•盐城)如图,给出了我国从1998年~2002年每年教育经费投入的情况.
(1)由图可见,1998年~2002年这五年内,我国教育经费投入呈现出______趋势;
(2)根据图中所给数据,求我国1998年~2002年教育经费的年平均数;
(3)如果我国的教育经费从2002年的5480亿元增加到2004年的7891亿元,那么这两年的教育经费平均增长率为多少?(结果精确到0.01)

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《锐角三角函数》(05)(解析版) 题型:解答题

(2004•盐城)如图,甲、乙两楼相距36m,甲楼高度为30m,自甲楼楼顶看乙楼楼顶的仰角为30°,问乙楼有多高(结果保留根式).

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《图形的相似》(06)(解析版) 题型:解答题

(2004•盐城)如图,直角梯形ABCD中,AB∥CD,AB⊥BC,对角线AC⊥BD,垂足为E,AD=BD,过点E作EF∥AB交AD于F,
求证:(1)AF=BE;
(2)AF2=AE•EC.

查看答案和解析>>

科目:初中数学 来源:2004年江苏省盐城市中考数学试卷(解析版) 题型:填空题

(2004•盐城)如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=    度.

查看答案和解析>>

同步练习册答案