精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠BCA=90°,DCA=30°,AC=,AD=,则BC的长为__

【答案】5.

【解析】

作辅助线,构建直角三角形,先根据直角三角形30度角的性质和勾股定理得:AE=,CE=,及ED的长,可得CD的长,证明△BFD∽△BCA,列比例式可得BC的长.

AAE⊥CDE,过DDF⊥BCF,

Rt△AEC中,∠ACD=30°,AC=

∴AE=,CE=

Rt△AED中,ED===

∴CD=CE+DE=+=

∵DF⊥BC,AC⊥BC,

∴DF∥AC,

∴∠FDC=∠ACD=30°,

∴CF=CD=×=

∴DF=

∵DF∥AC,

∴△BFD∽△BCA,

=

=

∴BF=

∴BC=+=5,

故答案为:5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数y=的图象的一支位于第一象限,点A(x1,y1),B(x2,y2)都在该函数的图象上.

(1)m的取值范围是   ,函数图象的另一支位于第一象限,若x1>x2,y1>y2,则点B在第   象限;

(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点C与点A关于x轴对称,若OAC的面积为6,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国传统数学最重要的著作奠定了中国传统数学的基本框架其中卷第九“勾股”章主要讲述了以测量问题为中心的直角三角形三边互求的关系其中记载:“今有邑东西七里南北九里各中开门出东门一十五里有木问:出南门几何步而见木?”译文:“如图今有一座长方形小城东西向城墙长7南北向城墙长9各城墙正中均开一城门走出东门15里处有棵大树问走出南门多少步恰好能望见这棵树?”(注:1里=300)你的计算结果是:出南门________步而见木

 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过点C06)的直线AC与直线OA相交于点A42),动点M在线段OA和射线AC上运动,试解决下列问题:

1)求直线AC的解析式;

2)求OAC的面积;

3)是否存在点M、使OMC的面积是OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在△ABC中,AC=BC=4,∠ACB=120°,将一块足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图放置,顶点P在线段AB上滑动,三角尺的直角边PM始终经过点C,并且与CB的夹角∠PCB=α,斜边PNAC于点D.

(1)当PN∥BC时,判断△ACP的形状,并说明理由;

(2)点P在滑动时,当AP长为多少时,△ADP△BPC全等,为什么?

(3)点P在滑动时,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只口袋里放着个红球、个黑球和若干个白球,这三种球除颜色外没有任何区别,并搅匀.

取出红球的概率为,白球有多少个?

取出黑球的概率是多少?

再在原来的袋中放进多少个红球,能使取出红球的概率达到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,∠ABC=45°,点DBC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点BBFED的延长线于点F.

(1)依题意补全图形;

(2)当AE=BD时,用等式表示线段DEBF之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,翻折,使点落在斜边上某一点处,折痕为(点分别在边上)

时,若相似(如图),求的长;

当点的中点时(如图),相似吗?请说明理由.

查看答案和解析>>

同步练习册答案