精英家教网 > 初中数学 > 题目详情
如图1、2是两个相似比为1:
2
的等腰直角三角形,将两个三角形如图3放置,小直角三角形的斜边与大直角三角形的一直角边重合.
(1)在图3中,绕点D旋转小直角三角形,使两直角边分别与AC、BC交于点E,F,如图4.求证:AE2+BF2=EF2
(2)若在图3中,绕点C旋转小直角三角形,使它的斜边和CD延长线分别与AB交于点E、F,如图5,此时结论AE2+BF2=EF2是否仍然成立?若成立,请给出证明;若不成立,请说明理由.


(3)如图6,在正方形ABCD中,E、F分别是边BC、CD上的点,满足△CEF的周长等于正方形ABCD的周长的一半,AE、AF分别与对角线BD交于M、N,试问线段BM、MN、DN能否构成三角形的三边长?若能,指出三角形的形状,并给出证明;若不能,请说明理由.
证明:(1)连CD,如图4,
∵两个等腰直角三角形的相似比为1:
2

而小直角三角形的斜边等于大直角三角形的直角边,


∴点D为AB的中点,
∴CD=AD,∠4=∠A=45°,
又∵∠1+∠2=∠2+∠3=90°,
∴∠3=∠1,
∴△CDF≌△ADE,
∴CF=AE,
同理可得△CED≌△BFD,
∴CE=BF,
而CE2+CF2=EF2
∴AE2+BF2=EF2

(2)结论AE2+BF2=EF2仍然成立.理由如下:
把△CFB绕点C顺时针旋转90°,得到△CGA,如图5
∴CF=CG,AG=BF,∠4=∠1,∠B=∠GAC=45°,
∴∠GAE=90°,
而∠3=45°,
∴∠2+∠4=90°-45°=45°,
∴∠1+∠2=45°,
∴△CGE≌△CFE,
∴GE=EF,
在Rt△AGE中,AE2+AG2=GE2
∴AE2+BF2=EF2

(3)线段BM、MN、DN能构成直角三角形的三边长.理由如下:
把△ADF绕点A顺时针旋转90°得到△ABP,点N的对应点为Q,如图

∴∠4=∠2,∠1+∠3+∠4=90°,BP=DF,BQ=DN,AF=AP,
∵△CEF的周长等于正方形ABCD的周长的一半,
∴EF=BE+DF,
∴EF=EP,
∴△AEF≌△AEP,
∴∠1=∠3+∠4,
而AQ=AN,
∴△AMQ≌△AMN,
∴MN=QM,
而∠ADN=∠QBA=45°,∠ABD=45°,
∴∠QBN=90°,
∴BQ2+BM2=QM2
∴BM2+DN2=MN2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

下列图中的“笑脸”,由下图按逆时针方向旋转90°得到的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在bt△O七B中,∠O七B=9x°,O七=七B=多,将△O七B绕点O沿逆时针方向旋转9x°得到△O七1B1
(1)线段O七1的长是______,∠七OB1的度数是______;
(口)连接七七1,求证:四边形O七七1B1是平行四边形;
(3)求点B旋转到点B1的位置所经过的路线的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点E是正方形ABCD内一点,将△ABE绕点B顺时针转90°,点E的对应点是F.
(1)在图中画出旋转后的三角形;
(2)△EBF是______三角形;(只写出结论,不证明)
(3)写出AE和CF的关系.(不用证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直线y=-
3
3
x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△BEA旋转后能与△DFA重合.
(1)△BEA绕______点______时针旋转______度能与△DFA重合;
(2)若AE=
6
cm,求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3.
(1)将△ECD沿直线l向左平移到图(2)的位置,使E点落在AB上,则CC′=______;
(2)将△ECD绕点C逆时针旋转到图(3)的位置,使点E落在AB上,则△ECD绕点C旋转的度数=______;
(3)将△ECD沿直线AC翻折到图(4)的位置,ED′与AB相交于点F,求证:AF=FD′.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图在四边形ABCD中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60度角,角的两边分别交AB、AC于E、F两点.连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,∠ACB=90°,AC=BC,E,F在斜边AB上,且∠ECF=45°.求证:AE2+BF2=EF2

查看答案和解析>>

同步练习册答案