精英家教网 > 初中数学 > 题目详情
(2009•江苏模拟)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点.点P从点D出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,点P、Q同时出发,当点Q运动到点A时停止,点P也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)D、F两点间的距离等于
25
25

(2)以点D为圆心,DC长为半径作圆交DE于M,能否在弧CM上找一点N,使直线QN切⊙D于N,且四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;
(3)作射线QK⊥AB,交折线BC-CA于点G,当t为何值时,点P恰好落在射线QK上;
(4)连接PG,当PG∥AB时,直接写出t的值.
分析:(1)由中位线定理即可求出DF的长;
(2)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为面积相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;
(3)①当点P在EF上(2
6
7
≤t≤5时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;
②当点P在FC上(5≤t≤7
6
7
)时,PB+PF=BF就可以得到;
(4)当PG∥AB时四边形PHQG是矩形,由此可以直接写出t.
解答:解:(1)Rt△ABC中,∠C=90°,AB=50,
∵D,F是AC,BC的中点,
∴DE∥BC,EF∥AC,∴DF=
1
2
AB=25

(2)能.
如图1,连接DF,过点F作FH⊥AB于点H,
∵D,F是AC,BC的中点,
∴DE∥BC,EF∥AC,四边形CDEF为矩形,
∴QK过DF的中点O时,QK把矩形CDEF分为面积相等的两部分
(注:可利用全等三角形借助割补法或用中心对称等方法说明),
此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.
故t=
12.5+16
4
=7
1
8


(3)①当点P在EF上(2
6
7
≤t≤5)时,
如图2,QB=4t,DE+EP=7t,
由△PQE∽△BCA,得
7t-20
50
=
25-4t
30

∴t=4
21
41

②当点P在FC上(5≤t≤7
6
7
)时,
如图3,已知QB=4t,从而PB=5t,
由PF=7t-35,BF=20,得5t=7t-35+20.
解得t=7
1
2


(4)如图4,t=1
2
3
;如图5,t=7
39
43

(注:判断PG∥AB可分为以下几种情形:
当0<t≤2
6
7
时,点P下行,点G上行,可知其中存在PG∥AB的时刻,
如图4;此后,点G继续上行到点F时,t=4,而点P却在下行到点E再沿EF上行,发现点P在EF上运动时不存在PG∥AB;
当5≤t≤7
6
7
时,点P,G均在FC上,也不存在,
PG∥AB;由于点P比点G先到达点C并继续沿CD下行,所以在7
6
7
<t<8中存在PG∥AB的时刻,
如图5,当8≤t≤10时,点P,G均在CD上,不存在PG∥AB).
点评:此题主要考查了相似三角形的判定与性质,运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•江苏模拟)如图是单位长度等于1的网格,点A、B、C都在格点上;
(1)画出将图△ABC绕点A逆时针旋转90°的△AB′C′,(其中B、C对应点分别是B′、C′);
(2)求点B运动过程中所经过的弧长;
(3)求边BC运动过程中所扫过的区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•江苏模拟)分解因式:2a3-2ab2=
2a(a+b)(a-b)
2a(a+b)(a-b)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•江苏模拟)已知圆锥的底面周长为6πcm,母线长为6cm,则侧面积为
18π
18π
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•江苏模拟)反比例函数y=
6x
的图象在第
一、三
一、三
象限;当x=3时,y=
2
2
;y=-2时,x=
-3
-3

查看答案和解析>>

同步练习册答案