精英家教网 > 初中数学 > 题目详情
11.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)
(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)

分析 在直角三角形BCD中,由BC与sinB的值,利用锐角三角函数定义求出CD的长,在直角三角形ACD中,由∠ACD度数,以及CD的长,利用锐角三角函数定义求出AD的长即可.

解答 解:∵∠BDC=90°,BC=10,sinB=$\frac{CD}{BC}$,
∴CD=BC•sinB=10×0.59=5.9,
∵在Rt△BCD中,∠BCD=90°-∠B=90°-36°=54°,
∴∠ACD=∠BCD-∠ACB=54°-36°=18°,
∴在Rt△ACD中,tan∠ACD=$\frac{AD}{CD}$,
∴AD=CD•tan∠ACD=5.9×0.32=1.888≈1.9(米),
则改建后南屋面边沿增加部分AD的长约为1.9米.

点评 此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.
(1)求证:AE•BC=AD•AB;
(2)若半圆O的直径为10,sin∠BAC=$\frac{3}{5}$,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.(1)化简:$\frac{x+1}{x-1}$-$\frac{4x}{{x}^{2}-1}$
(2)解不等式组$\left\{\begin{array}{l}{\frac{x+1}{2}≤1}\\{5x-8<9x}\end{array}\right.$,并写出它的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.
(1)写出按上述规定得到所有可能的两位数;
(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.二次函数y=-(x-1)2+5,当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+n的值为(  )
A.$\frac{5}{2}$B.2C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )
A.4.8B.5C.6D.7.2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如果向右走5步记为+5,那么向左走3步记为(  )
A.+3B.-3C.+$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,一个空心圆柱体,其主视图正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.请阅读下列材料:
问题:如图1,△ABC中,∠ACB=90°,AC=BC,MN是过点A的直线,DB⊥MN于点D,联结CD.
求证:BD+AD=$\sqrt{2}$CD
小明的思考过程如下:要证BD+AD=$\sqrt{2}$CD,需要将BD,AD转化到同一条直线上,可以在MN上截取
AE=BD,并联结EC,可证△ACE和△BCD全等,得到CE=CD,且∠ACE=∠BCD,由此推出△CDE为等腰直角三角形,可知DE=$\sqrt{2}$CD,于是结论得证.
小聪的思考过程如下:要证BD+AD=$\sqrt{2}$CD,需要构造以CD为腰的等腰直角三角形,可以过点C作CE⊥CD交MN于点E,可证△ACE和△BCD全等,得到CE=CD,且AE=BD,由此推出△CDE为等腰直角三角形,可知BD+AD=$\sqrt{2}$CD,于是结论得证.

请你参考小明或小聪的思考过程解决下面的问题:
(1)将图1中的直线MN绕点A旋转到图2和图3的两种位置时,其它条件不变,猜想BD,AD,CD之间的数量关系,并选择其中一个图形加以证明;
(2)在直线MN绕点A旋转的过程中,在图3中,当∠BCD=30°,BD=$\sqrt{2}$时,求CD的长度.

查看答案和解析>>

同步练习册答案