精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,∠C=30゜,AB的垂直平分线MN分别交BC、AB于点M、N,试探究BM与CM之间的数量关系.
分析:首先连接AM,易得AM=BM,又由△ABC中,AB=AC,∠C=30゜,即可求得∠CAM的度数,继而证得CM=2AM=2BM.
解答:解:CM=2BM.
证明:连接AM,
∵△ABC中,AB=AC,∠C=30゜,
∴∠B=∠C=30゜,
∵AB的垂直平分线MN分别交BC、AB于点M、N,
∴AM=BM,
∴∠BAM=∠B=30°,
∴∠CAM=180°-∠B-∠C-∠BAM=90°,
∴CM=2AM,
∴CM=2BM.
点评:此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想与转化思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案