精英家教网 > 初中数学 > 题目详情

【题目】有大小两种货车,1辆大货车与3辆小货车额定载重量的总和为23吨,2辆大货车与5辆小货车额定载重量的总和为41. 1辆大货车、1辆小货车的额定载重量分别为多少吨?设1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,依题意,可以列方程组为__________.

【答案】

【解析】

1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,

根据题意1辆大货车与3辆小货车额定载重量的总和为23吨,可列;根据题意2辆大货车与5辆小货车额定载重量的总和为41吨,可列,则可得答案.

1辆大货车的额定载重量为x吨,1辆小货车的额定载重量为y吨,

根据题意1辆大货车与3辆小货车额定载重量的总和为23吨,可列;根据题意2辆大货车与5辆小货车额定载重量的总和为41吨,可列,则可以列方程组为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y12x+2x轴、y轴于点AC,直线x轴、y轴于点BC,点P(m1)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为(  )

A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数的图象与性质.小彤根据学习函数的经验,对函数的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:

x

-4

-3.5

-3

-2

-1

0

1

2

3

3.5

4

y

0

m

(1)求m的值为

(2)如图,在平面直角坐标系x0y 中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;

(3)方程实数根的个数为

(4)观察图象,写出该函数的一条性质

(5)在第(2)问的平面直角坐标系中画出直线,根据图象写出方程的一个正数根约为 (精确到0.1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+bx+c的图象经过点A40),B(﹣4,﹣4),且与y轴交于点C

1)求此二次函数的解析式;

2)证明:AO平分∠BAC

3)在二次函数对称轴上是否存在一点P使得APBP?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.

1)请求出购进这两种水果每箱的价格是多少元?

2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;

3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.

a. 实心球成绩的频数分布表如下:

分组

频数

2

m

10

6

2

1

b. 实心球成绩在这一组的是:

a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3

c. 一分钟仰卧起坐成绩如下图所示:

根据以上信息,回答下列问题:

1 ①表中m的值为__________

②一分钟仰卧起坐成绩的中位数为__________

2)若实心球成绩达到7.2米及以上时,成绩记为优秀.

①请估计全年级女生实心球成绩达到优秀的人数;

②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:

女生代码

A

B

C

D

E

F

G

H

实心球

8.1

7.7

7.5

7.5

7.3

7.2

7.0

6.5

一分钟仰卧起坐

*

42

47

*

47

52

*

49

其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、F、C、D四点在同一条直线上,AF=CD,ABDE,且AB=DE.

(1)求证:△ABC≌△DEF;

(2)若EF=3,DE=4,DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AC平分∠BCDAC⊥ABEBC的中点,AD⊥AE

1)求证:AC2=CD·BC

2)过EEG⊥AB,并延长EG至点K,使EK=EB

若点H是点D关于AC的对称点,点FAC的中点,求证:FH⊥GH

∠B=30°,求证:四边形AKEC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=﹣2x+5分别与x轴,y轴交于点CD,与反比例函数y的图象交于点AB.过点AAEy轴于点E,过点BBFx轴于点F,连结EF;下列结论:①ADBC②EFAB四边形AEFC是平行四边形;④SEOFSDOC35.其中正确的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步练习册答案