分析 (1)过点P作l1的平行线,根据平行线的性质进行解题;
(2)当点P在下侧时,过点P作l1的平行线PQ,由平行线的性质可得出l1∥l2∥PQ,由此即可得出结论.
解答 解:(1)∠1+∠2=∠3;
理由:如图1,过点P作l1的平行线,
∵l1∥l2,
∴l1∥l2∥PQ,
∴∠1=∠4,∠2=∠5,
∵∠4+∠5=∠3,
∴∠1+∠2=∠3;
(2)∠1-∠2=∠3或∠2-∠1=∠3.
理由:如图2,当点P在下侧时,过点P作l1的平行线PQ,
∵l1∥l2,
∴l1∥l2∥PQ,
∴∠2=∠4,∠1=∠3+∠4,
∴∠1-∠2=∠3;
当点P在上侧时,同理可得∠2-∠1=∠3.
点评 本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com