分析 先根据等腰三角形的底角相等,得出∠AED+∠CDE=180°,判定AE∥CD,再根据一个角是60°的等腰三角形是等边三角形,得出∠ABC的度数.
解答 证明:连接AC,
∵AE=AB,
∴∠ABE=∠AEB,同理∠CBD=∠CDB.
∵∠ABC=2∠DBE,
∴∠ABE+∠CBD=∠DBE,
∵∠ABE=∠AEB,∠CBD=∠CDB,
∴∠AEB+∠CDB=∠DBE,
∴∠AED+∠CDE=180°,
∴AE∥CD,
∵AE=CD,
∴四边形AEDC为平行四边形.
∴DE=AC=AB=BC.
∴△ABC是等边三角形,
∴∠ABC=60°
点评 本题主要考查等腰三角形的性质:等腰三角形的底角相等,以及等边三角形的判定定理.解题时注意,同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com