精英家教网 > 初中数学 > 题目详情
11.如图,△ABC的顶点坐标分别为A(-4,2),B(-2,4),C(-4,4),以点P(-1,1)为位似中心,将△ABC缩小后得到△A′B′C′.若点C的对应点C′的坐标为(2,-2),则点A的对应点A′的坐标为(  )
A.(2,0)B.(2,-1)C.(0,-2)D.(1,-2)

分析 根据位似变换的性质得到点C与点C′关于点P对称,根据中心对称的性质计算即可.

解答 解:点C的坐标是(-4,4),以点P(-1,1)为位似中心,将△ABC缩小后得到△A′B′C′.点C的对应点C′的坐标为(2,-2),
则点C与点C′关于点P对称,
∵点A的坐标为(-4,2),
∴点A的对应点A′的坐标为(2,0),
故选:A.

点评 本题考查的是位似变换的性质、坐标与图形性质,根据题意得到点C与点C′关于点P对称是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,在Rt△ABC中,∠A=60°,AB=2,以点B为圆心,BC为半径的弧交AB于点D,以点A为圆心,AC为半径的弧交AB于点E,则图中阴影部分的面积为$\frac{5π-6\sqrt{3}}{12}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿着网格线平移后,点A平移到点A1,在网格中作出平移后得到的△A1B1C1
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中作出旋转后得到的△A1B2C2
(3)在(2)的条件下,如果网格中小正方形的边长为1,求点B1经过的路径长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.解方程组:$\left\{\begin{array}{l}{3x-2y=3}\\{-2x+3y=-7}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:$\frac{3}{x-2}$-$\frac{x-3}{{{x^2}-4}}$÷$\frac{{{x^2}-x-6}}{{{x^2}+4x+4}}$,其中x=$\sqrt{3}$+3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.将函数y=x2-2x-3的图象沿y轴翻折后与原图象合起来,构成一个新的函数的图象,若y=m与新图象有四个公共点,则m的取值范围为m>-4且m≠-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程:$\frac{2x-1}{3}$=$\frac{1}{2}$x-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50(含5和50)之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据:
薄板的边长(cm)2030
出厂价(元/张)5070
(1)求一张薄板的出厂价y与边长x之间满足的函数关系式,并写出自变量的取值范围;
(2)已知出厂一张边长为40cm的薄板,获得利润是26元(利润=出厂价-成本价).
①求一张薄板的利润W与边长x这之间满足的函数关系式;
②当边长为多少厘米时,出厂一张薄板获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,BD是△ABC的角平分线,点E、F分别在BC、AB上,且DE∥AB,EF∥AC.
(1)指出图中的一个等腰三角形,并加以证明;
(2)求证:BE=AF;
(3)若∠ABC=60°,ED=AD,求∠A的度数.

查看答案和解析>>

同步练习册答案