精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.
(1)若圆心O与C重合时,⊙O与AB有怎样的位置关系?
(2)若点O沿线段CA移动,当OC等于多少时,⊙O与AB相切?

(1)解:
过O作OD⊥AB于D,
由勾股定理得:AB===13,
由三角形的面积公式得:AC×BC=AB×CD,
∴5×12=13×CD,
∴CD=>3,
∴⊙O与AB的位置关系是相离.

(2)解:①过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,
∵OD⊥AB,∠C=90°,
∴∠ODA=∠C=90°,
∵∠A=∠A,
∴△ADO∽△ACB,
=
=
∴AO=
∴OC=5-=
②如图
过O作OD⊥BA交BA延长线于D,
则∠C=∠ODA=90°,∠BAC=∠OAD,
∴△BCA∽△ODA,
=
=
OA=
OC=5+=
答:若点O沿线段CA移动,当OC等于时,⊙O与AB相切
分析:(1)过O作OD⊥AB于D,由勾股定理求出AB,根据三角形的面积公式求出OD,把OD和3比较即可得出答案;
(2)过O作OD⊥AB于E,OD=3时,⊙O与AB相切,证△ADO和△ACB相似,得出比例式,代入即可求出OC.
点评:本题考查了直线与圆的位置关系,三角形的面积,相似三角形的性质和判定,勾股定理等知识点的运用,注意:判断直线与圆的位置关系的思路是过圆心作直线的垂线,比较垂线段的长和半径的大小即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案