(1)解:
过O作OD⊥AB于D,
由勾股定理得:AB=
=
=13,
由三角形的面积公式得:AC×BC=AB×CD,
∴5×12=13×CD,
∴CD=
>3,
∴⊙O与AB的位置关系是相离.
(2)解:①过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,
∵OD⊥AB,∠C=90°,
∴∠ODA=∠C=90°,
∵∠A=∠A,
∴△ADO∽△ACB,
∴
=
即
=
,
∴AO=
,
∴OC=5-
=
,
②如图
过O作OD⊥BA交BA延长线于D,
则∠C=∠ODA=90°,∠BAC=∠OAD,
∴△BCA∽△ODA,
∴
=
,
∴
=
,
OA=
,
OC=5+
=
答:若点O沿线段CA移动,当OC等于
或
时,⊙O与AB相切
分析:(1)过O作OD⊥AB于D,由勾股定理求出AB,根据三角形的面积公式求出OD,把OD和3比较即可得出答案;
(2)过O作OD⊥AB于E,OD=3时,⊙O与AB相切,证△ADO和△ACB相似,得出比例式,代入即可求出OC.
点评:本题考查了直线与圆的位置关系,三角形的面积,相似三角形的性质和判定,勾股定理等知识点的运用,注意:判断直线与圆的位置关系的思路是过圆心作直线的垂线,比较垂线段的长和半径的大小即可.