精英家教网 > 初中数学 > 题目详情

△ABC和各有6个元素(三条边和三个内角),问以下条件之一能否保证,如果能,说明理由,如不能,试举一反例

(1)有3组对应元素相等;

(2)有4组对应元素相等;

(3)有4组元素(不一定对应)分别相等;

(4)有5组元素(不一定对应)分别相等.

答案:
解析:

解:(1)不一定能保证,如同是90°、60°、30°的三角板有大有小不全等.

(2)能保证,因为给定的4组对应元素至少有一组边,根据SSSSASASAAAS中的任一种即可判定两三角形全等.

(3)不能保证全等.

如图所示,但△ABC不等.

(4)不能保证全等.

如图所示,,但△ABC不全等.


提示:

不一定是元素组数相等越多就全等,一定注意对应两字.

根据题目提供的条件,结合判定两三角形全等的方法,对每一问画出符合条件的图形,然后进行判断.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则co精英家教网sA=
AD
b

即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA        (1)
同理可得:b2=a2+c2-2accosB      (2)
c2=a2+b2-2abcosC               (3)
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3
3
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB,垂足为点D,则cosA=
ADb
,即AD=bcosA,所以BD=c-AD=c-bcosA.
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2,b2-b2cos2A=a2-(c-bcosA)2
整理得a2=b2+c2-2bccosA.           ①
同理可得b2=a2+c2-2accosB.         ②
C2=a2+b2-2abcosC.                 ③
这个结论就是著名的余弦定理.在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
(1)在锐角△ABC中,已知∠A=60°,b=5,c=7,试利用①,②,③求出a,∠B,∠C,的数值;
(2)已知在锐角△ABC中,三边a,b,c分别是7,8,9,求出∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:044

△ABC和各有6个元素(三条边和三个内角),问以下条件之一能否保证,如果能,说明理由,如不能,试举一反例

(1)有3组对应元素相等;

(2)有4组对应元素相等;

(3)有4组元素(不一定对应)分别相等;

(4)有5组元素(不一定对应)分别相等.

查看答案和解析>>

科目:初中数学 来源:第7章《锐角三角函数》中考题集(28):7.5 解直角三角形(解析版) 题型:解答题

在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则cosA=
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD2=AC2-AD2=BC2-BD2
∴b2-b2cos2A=a2-(c-bcosA)2
整理得:a2=b2+c2-2bccosA
同理可得:b2=a2+c2-2accosB
c2=a2+b2-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a2=32+62-2×3×6cos60°=27
∴a=3,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)

查看答案和解析>>

同步练习册答案