精英家教网 > 初中数学 > 题目详情
正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.求证:
①△ABG≌△AFG;
②BG=GC.
证明:(1)∵△ADE沿AE对折至△AFE,
∴△ADE≌△AFE,
∴AD=AF,∠D=∠AFE=90°,
又∵ABCD为正方形,
∴AD=AB,∠D=∠B=90°,
∴AB=AF,∠B=∠AFG=∠D=90°,
在△ABG和△AFG中,
AG=AG
AB=AF

∴△ABG≌△AFG(HL);

(2)设BG=x,
∵正方形ABCD中,AB=6,
∴AB=BC=CD=6,
∴CG=6-x,
又∵CD=3DE,
∴CG=2,CE=4,
又∵△ADE≌△AFE,
∴EF=DE=2,
又∵△ABG≌△AFG,
∴BG=GF=x,
∴EG=2+x,
∴在Rt△GCE中,GE2=GC2+EC2
(2+x)2=(6-x)2+42
∴x=3,
∴BG=3,CG=3,
∴G为BC中点.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,直角坐标系中,正方形ABCD的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,
(1)求证:△BEC≌△DEC:
(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是一个正方形.
(1)请你在平面内找到一个点O,并连接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD是全等的等腰三角形.
(2)写出你找到的等腰三角形的顶角的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:
①△APE≌△DQE;
②点P在AB上总存在某个位置,使得△PQF为等边三角形;
③若tan∠AEP=
2
3
,则
S△PBF
S△APE
=
14
3

其中正确的是(  )
A.①B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,正方形ABCD中,E,F,GH分别为四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH为正方形.
(2)如图2,有一块边长1米的正方形钢板,被裁去长为
1
4
米、宽为
1
6
米的矩形两角,现要将剩余部分重新裁成一正方形,使其四个顶点在原钢板边缘上,且P点在裁下的正方形一边上,问如何剪裁使得该正方形面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为(  )
A.
3
-1
B.3-
5
C.
5
+1
D.
5
-1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△ABC中,∠CAB与∠CBA均为锐角,分别以CA、CB为边向△ABC外侧作正方形CADE和正方形CBFG,再作DD1⊥直线AB于D1,FF1⊥直线AB于F1
求证:(Ⅰ)DD1+FF1=AB;
(Ⅱ)线段AB的中点N也平分线段D1F1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,四边形ABCD是正方形,E为BF上一点,四边形AEFC恰是一个菱形,则∠EAB=______.

查看答案和解析>>

同步练习册答案