精英家教网 > 初中数学 > 题目详情
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(
3
,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
精英家教网
分析:(1)先根据B(
3
,1
),可知BC=OA=OP=1,OC=
3
.设P(x,2x-1),过P作PH⊥x轴于H.利用x分别表示出PH、OH、又OP=1,根据勾股定理即可解答;
(2)连接PB,PC.①若PB=PC,设P(x,
1
2
),过P作PH⊥x轴于H.
在Rt△OPH中根据勾股定理解得x,从而确定P点坐标,进而求出解析式.
②若BP=BC,则BP=1,连接OB.在Rt△OBC中根据勾股定理求出OB,从而得出P为线段OB中点,求出P点坐标,进而求解析式.
③若CP=CB,则CP=1,PO=PC,则P在OC中垂线x=
3
2
上.设P(
3
2
,y).过P作PH⊥x轴于H.在Rt△OPH中根据勾股定理求出P点坐标,从而确定解析式.
(3)根据求最小值的解法,找对称点,构建直角三角形,利用勾股定理解答即可.
解答:精英家教网解:(1)∵B(
3
,1

∴BC=OA=OP=1,OC=
3

∵点P在一次函数y=2x-1的图象上
∴设P(x,2x-1)
如图,过P作PH⊥x轴于H
在Rt△OPH中,PH=2x-1,OH=x,OP=1
∴x2+(2x-1)2=1
解得:x1=
4
5
,x2=0(不合题意,舍去)
∴P(
4
5
3
5
)(2分)

(2)连接PB,PC
精英家教网①若PB=PC,则P在BC中垂线y=
1
2

∴设P(x,
1
2
),如图,过P作PH⊥x轴于H
在Rt△OPH中,PH=
1
2
,OH=x,OP=1
∴x2+
1
4
=1
解得:x1=
3
2
,x2=-
3
2
(不合题意,舍去)
∴P(
3
2
1
2

1
2
=a×
3
4

得a=
2
3

∴y=
2
3
x2(2分)
②若BP=BC,则BP=1,连接OB
∵OP=1
∴OP+PB=2
∵在Rt△OBC中,∠OCB=90°,OB=
3+1
=2
∴OP+PB=OB
∴O,P,B三点共线,P为线段OB中点.
又∵B(
3
,1)
∴P(
3
2
1
2

1
2
=a×
3
4

解得:a=
2
3

∴y=
2
3
x2
③若CP=CB,则CP=1
∵OP=1
∴PO=PC,则P在OC中垂线x=
3
2

∴设P(
3
2
,y).
过P作PH⊥x轴于H,在Rt△OPH中,PH=|y|,OH=
3
2
,OP=1
∴y2+
3
4
=1
解得:y1=
1
2
,y2=-
1
2

∴P(
3
2
1
2
)或(
3
2
,-
1
2

当点P(
3
2
,-
1
2
)时,∠AOP=120°,此时∠AOD=60°,点D与点B重合,符合题意.
若点P(
3
2
1
2
),则
1
2
=a×
3
4
,解得:a=
2
3
.∴y=
2
3
x2
若点P(
3
2
,-
1
2
),则-
1
2
=a×
3
4
,解得:a=-
2
3

∴y=-
2
3
x2(2分)

(3)如图,∵△OAD沿OD翻折,点A落在点P处
精英家教网∴OD垂直平分AP
∵PC⊥OD
∴A,P,C三点共线.
在Rt△AOD中,∠OAD=90°,OA=1
又可得:∠AOD=30°
∴AD=AO•tan30°=
3
3

∴D(
3
3
,1)
作点B关于直线AC的对称点B′,过点B′作B′N⊥AB于点N,连接DB′,DB′与AC交点为M,此点为所求点.
∵∠ACB′=∠ACB=60°,∠ACO=30°
∴∠B′CO=30°
∵B′C=BC=1
∴B′(
3
2
,-
1
2
),
∴N(
3
2
,1)
在Rt△B′ND中,∠B′ND=90°,B′N=
3
2
,DN=AN-AD=
3
2
-
3
3
=
3
6

∴DB′=
DN2+B′N2
=
21
3

∴DM+BM的最小值为
21
3
.(2分)
点评:本题考查二次函数的综合应用,其中涉及到的知识点有待定系数法求函数解析式和轴对称中的最小值问题,函数图象上点的意义,等腰三角形的性质等.要熟练掌握才能灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC的顶点0、B的坐标分别是O(0,0)、B(8,4),顶点A在x轴上,顶点C在y轴上,把△OAB沿OB翻折,使点A落在点D的位置,BD与OA交于E.
①求证:OE=EB;
②求OE、DE的长度;
③求直线BD的解析.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,矩形OABC的边OA、OC在坐标轴上,经过点B的双曲线的解析式为y=
k
x
(x
<0),M为OC上一点,且CM=2OM,N为BC的中点,BM与AN交于点E,若四边形EMCN的面积为
13
4
,则k=
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知如图,矩形OABC的长OA=
3
,宽OC=1,将△AOC沿AC翻折得△APC.
(1)求∠PCB的度数;
(2)若P,A两点在抛物线y=-
4
3
x2+bx+c上,求b,c的值,并说明点C在此抛物线上;
(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•樊城区模拟)已知如图,矩形OABC的长OA=2
3
,宽OC=2,将△AOC沿AC翻折得△AFC.
(1)求点F的坐标;
(2)求过A、F、C三点的抛物线解析式;
(3)在抛物线上是否存在一点P,使得△ACP为以A为直角顶点的直角三角形?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,矩形OABC的顶点坐标分别是(0,0),(4,0),(4,1),(0,1),在矩形OABC的内部任取一点(x,y),则x<y的概率是
 

查看答案和解析>>

同步练习册答案