精英家教网 > 初中数学 > 题目详情
(2006•临安市)某校七(1)班的全体同学最喜欢的球类运动用图所示的统计图来表示,下面说法正确的是( )

A.从图中可以直接看出喜欢各种球类的具体人数
B.从图中可以直接看出全班的总人数
C.从图中可以直接看出全班同学一学期来喜欢各种球类的变化情况
D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系
【答案】分析:利用扇形统计图的特点,可以得到各类所占的比例,但总数不确定,不能确定每类的具体人数.
解答:解:因为扇形统计图直接反映部分占总体的百分比大小,不能反映具体数量的多少和变化情况,
所以A、B、C都错误,
故选D.
点评:本题考查扇形统计图.扇形统计图可清楚的表示各部分所占的百分比.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年浙江省临安市中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年四川省成都市郫县中考数学试卷(课标卷)(解析版) 题型:解答题

(2006•临安市)如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.
(1)当A′E∥x轴时,求点A′和E的坐标;
(2)当A′E∥x轴,且抛物线y=-x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;
(3)当点A′在OB上运动,但不与点O、B重合时,能否使△A′EF成为直角三角形?若能,请求出此时点A′的坐标;若不能,请你说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年山东省济宁市嘉祥县梁宝寺镇第一中学九年级(下)第一次月考数学试卷(解析版) 题型:选择题

(2006•临安市)从正面观察下图的两个物体,看到的是( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案