精英家教网 > 初中数学 > 题目详情

如图,AC=BC,AC⊥BC于C,AB=AD=BD,CD=CE=DE.若AB=数学公式,则BE=


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
A
分析:根据等边三角形边长相等的性质,可以证明△ACD≌△BED,故AC=BE,已知AB,根据勾股定理即可求AC的长,即可解题.
解答:∵∠ADC+∠CDB=60°,∠CDB+∠BDE=60°,
∴∠ADC=∠BDE,
在△ACD和△BED中,

∴△ACD≌△BED,
∴AC=BE,
∵AC=BC,AB=
∴AC=BC=1,
∴BE=1.
故选A.
点评:本题考查了勾股定理在直角三角形中的运用,全等三角形的证明和全等三角形对应边相等的性质,本题中求证△ACD≌△BED是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E,F,那么,CE=DF吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,AC=BC,AD=BD,下列结论中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,DE是AB的垂直平分线,∠CAE=30°,则∠B=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AC⊥BC,AD=BD,为了使图中的△BCD是等边三角形,再增加一个条件可以是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:AC⊥BC,CD⊥AB,则点B到AC的距离是线段
BC
BC
的长.

查看答案和解析>>

同步练习册答案