精英家教网 > 初中数学 > 题目详情
10.如图是某市2013-2016年私人汽车拥有量和年增长率的统计图.该市私人汽车拥有量年净增量最多的是2016年,私人汽车拥有量年增长率最大的是2015年.

分析 直接利用条形统计图以及折线统计图分别分析得出答案.

解答 解:由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183-150=33(万辆),
由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年.
故答案为:2016,2015.

点评 此题主要考查了折线统计图以及条形统计图的应用,正确利用图形获取信息是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B(-1,0),与y轴交于点C(0,4),作直线AC.
(1)求抛物线解析式;
(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;
(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简,再求值:$\frac{a-3}{3{a}^{2}-6a}$÷(a+2-$\frac{6a-13}{a-2}$),其中x2-2$\sqrt{3}$x+a=0有两个不相等的实数根,且a为非负整数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,平面直角坐标系中,O为坐标原点,等腰Rt△OAB的顶点B在第一象限,直角边OA在y轴上,点P是边AB上的一个三等分点,过点P的反比例函数y=$\frac{k}{x}$的图象交斜边OB于点Q,△AOQ的面积为3,则k的值为2$\sqrt{3}$或2$\sqrt{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.化简:$\frac{1}{{a}^{2}-a}$+$\frac{a-3}{{a}^{2}-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知关于x的一元二次方程x2-(5m+1)x+4m2+m=0.
(1)求证:无论m取任何实数时,原方程总有两个实数根;
(2)如果对于原方程的每一个整数根,都满足两根之商也是整数,直接写出m的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.阅读下面材料:
在数学课上,老师提出如下问题:
已知:如图1,△ABC.
求作:BC边上的高线.
小丽的作法如下:
(1)以点C为圆心,CA为半径画弧①;
(2)以点B为圆心,BA为半径画弧②,两弧相交于点D;
(3)连结AD,交BC的延长线于点E.
所以线段AE就是所求作的BC边上的高线.
老师说:“小丽的作法正确.”
请回答:小丽的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.先化简,再求值:(1+$\frac{1}{x-2}$)÷$\frac{x-1}{{x}^{2}-4x+4}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=-x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.

查看答案和解析>>

同步练习册答案