【题目】如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.
(1)求一次函数与反比例函数的解析式;
(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?
(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.
【答案】(1)y=﹣x+5;(2)当1<x<4时,一次函数值大于反比例函数值;(3)
【解析】
(1)根据待定系数法求得即可;
(2)由两个函数图象即可得出答案;
(3)设P(m,),先求得△AOC的面积,即可求得△CPQ的面积,根据面积公式即可得到|5﹣m|=5,解得即可.
解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,
∴反比例函数为y=;
把A(1,4)和B(4,1)代入y=kx+b得,
解得:,
∴一次函数为y=﹣x+5.
(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;
(3)设P(m,),
由一次函数y=﹣x+5可知C(5,0),
∴S△CAO==10,
∵S△CPQ=S△CAO,
∴S△CPQ=5,
∴|5﹣m|=5,
解得m=或m=﹣(舍去),
∴P(,).
科目:初中数学 来源: 题型:
【题目】如图,四边形内接于,是的直径,点在的延长线上,延长交的延长线于点,点是的中点,.
(1)求证:是的切线;
(2)求证:是等腰三角形;
(3)若,,求的值及的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)设点M(3,m),求使MN+MD的值最小时m的值;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D.
(1)求a,b的值及反比例函数的解析式;
(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;
(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△OAB三个顶点的坐标分别为O(0,0),A(3,0),B(2,3).
(1)tan∠OAB= ;
(2)在第一象限内画出△OA'B',使△OA'B'与△OAB关于点O位似,相似比为2:1;
(3)在(2)的条件下,S△OAB:S四边形AA′B′B= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于、两点,经过点,交轴于点.
(1)求抛物线的解析式及点的坐标;
(2)求的面积;
(3)若点在直线上,点在平面上,是否存在这样的点,使得以点为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=30.
(1)求BE的长.
(2)若BC=15,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方方驾驶小汽车匀速地从地行驶到地,行驶里程为千米,设小汽车的行驶时间为 (单位:小时),行驶速度为 (单位:千米/小时),且全程速度限定为不超过千米/小时.
(1)求关于的函数表达式,并写出自变量的取值范围;
(2)方方上午点驾驶小汽车从地出发;
①方方需在当天点分至点(含点分和点)间到达地,求小汽车行驶速度的范围;
②方方能否在当天点分前到达地?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com