【题目】已知抛物线y=ax2+bx+c的顶点M在第二象限,且经过点 A(1,0)和点 B(0,2).则
(1)a 的取值范围是________;
(2)若△AMO的面积为△ABO面积的倍时,则a的值为________
【答案】(1)﹣2<a<0 (2)﹣4+2.
【解析】
(1)把点A(1,0)和点B(0,1)的坐标代入抛物线的解析式,可求出c的值,整理就得到a,b的关系,根据M点在第二象限,可知抛物线的开口方向,可确定a的符号,即可得答案;(2)利用公式求出抛物线的顶点的纵坐标,进而表示出△AMO的面积,根据S△AMO=S△ABO,就可以得到关于a的方程,解得a的值.
(1)∵顶点M在第二象限,且经过点A(1,0),B(0,2)
∴抛物线开口向下,
∴a<0,把A、B坐标代入抛物线的解析式,得
a+b+c=0,c=2,
整理得b=-a-2,c=2,
∴抛物线的解析式为y=ax2-(a+2)x+2 ①,
∵顶点M在第二象限,
∴<0, 由于a<0,=>0
∴a+2>0,-2<a<0;
(2)∵b=-a-2,
∴抛物线的解析式为:y=ax2-(a+2)x+2,
∴顶点的纵坐标为:=
∵S△ABO= =1,
∴S△AMO= 1 =,
解得:a1=-4+;a2=-4-(不符合题意,舍去),
∴a=-4+.
科目:初中数学 来源: 题型:
【题目】在中,,CD是AB边上的高,若.
(1)求CD的长.
(2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上从点A出发向点C运动,速度为v个单位秒,设运动的时间为,当点Q到点C时,两个点都停止运动.
①若当时,,求t的值.
②若在运动过程中存在某一时刻,使成立,求v关于t的函数表达式,并写出自变量t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c的图象如图所示,根据图象解答下列问题:
(1)抛物线与x轴的另一个交点坐标; ;
(2)方程ax2+bx+c=0的两个根是 ;
(3)不等式ax2+bx+c<0的解是 ;
(4)y随x的增大而减小的自变量x的取值范围是 ;
(5)求出抛物线的解析式及顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A=∠B=90°,P是线段AB上的一个动点.
(1)若AD=2,BC=6,AB=8,且以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,求AP的长;
(2)若AD=a,BC=b,AB=m,则当a,b,m满足什么关系时,一定存在点P使△ADP∽△BPC?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】通过对《勾股定理》的学习,我们知道:如果一个三角形中,两边的平方和等于第三边的平方,那么这个三角形一定是直角三角形.如果我们新定义一种三角形——两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.
(1)根据奇异三角形的定义,请你判断:等边三角形一定是奇异三角形吗?
(填“是”或不是);
(2)若某三角形的三边长分别为1、、2,则该三角形是不是奇异三角形,请做出判断并写出判断依据;
(3)在中,两边长分别为,且且,则这个三角形是不是奇异三角形?请做出判断并写出判断依据;
探究:Rt中,,且b>a,若Rt是奇异三角形,求.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线,与和分别相切于点和点.点和点分别是和上的动点,沿和平移.的半径为,.下列结论错误的是( )
A. B. 若与相切,则
C. 若,则与相切 D. 和的距离为
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.
(1)求证:AC∥OD;
(2)如果DE⊥BC,求弧AC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等边△ABC如图放置,A(1,1),B(3,1),等边三角形的中心是点D,若将点D绕点A旋转90°后得到点D′,则D′的坐标( )
A. (1+,0) B. (1﹣,0)或(1+,2)
C. (1+,0)或(1﹣,2) D. (2+,0)或(2﹣,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com