精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,∠ACB=90°,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,连OE交DC于P,则下列结论,其中正确的有(  )
①BC=2DE;     ②OE∥AB;   ③DE=
2
PD;    ④AC•DF=DE•CD.
A、①②③B、①③④
C、①②④D、①②③④
分析:本题是一道利用切线性质解答的有关圆的知识题目,根据已知条件可以对已有的4个结论一一进行求解证明,利用切线长定理可以得到P为中点,利用三角形的中位线得到平行,得到E为中点,得到相应答案,利用三角形相似得到④AC•DF=DE•CD,从而得出答案.
解答:精英家教网解:∵∠ACB=90°
∴BC是⊙O的切线
∵BC是⊙O的切线
∴OE垂直平分CD,∠OEC=∠OED
∴P是CD的中点
∴OP∥AB,
∴OE∥AB
②正确,
∴E是BC的中点
∵AC是直径
∴∠ADC=90°
∴CD⊥AB
∴∠CDB=90°
∴BC=2DE,①正确;
∵EF⊥AB
∴∠DFE=∠ADC=90°
∵DE=CD,BC是⊙O的切线,
∴DE是⊙O的切线,
∴∠EDF=∠CAD,
∴△ACD∽△EDF
AC
DE
=
CD
DF

∴AC•DF=DE•CD,④正确.
在四边形PDFE中,我们可以证明它是矩形,而不具备证明它是正方形的条件,
∴DE=
PE2+PD2
只有PE=PD时DE才等于
2
PD.
∴③DE=
2
PD不成立
综上所述,正确的是C
故选C
点评:本题考查了圆的切线的性质、圆周角定理,相似三角形的判定与性质,切线长性质及三角形的中位线的运用
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是
∠A=∠D或∠ABC=∠DCB或BD=AC
(只需填写一个你认为适合的条件).

查看答案和解析>>

科目:初中数学 来源: 题型:

36、已知:如图,∠ACB=90°,D、E是AB上的两点,且AE=AC,BD=BC,EF⊥CD于F,
求证:CF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D在AB上.
求证:BD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,∠ACB=90°,AC=BC,AD=BE,∠CAD=∠CBE.
(1)判断△DCE的形状,并说明你的理由;
(2)当BD:CD=1:2时,∠BDC=135°时,求sin∠BED的值.

查看答案和解析>>

同步练习册答案