精英家教网 > 初中数学 > 题目详情
阅读理解题:
【几何模型】
条件:如图1,A、B是直线l同旁的两个定点.
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′P+PB=A′B,
由“两点之间,线段最短”可知,点P即为所求的点.

【模型应用】
如图2所示,两个村子A、B在一条河CD的同侧,A、B两村到河边的距离分别为AC=1千米,BD=3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送水,铺设水管的工程费用为每千米15000元,请你在CD上选择水厂位置,使铺设水管的费用最省,并求出最省的铺设水管的费用W.
分析:由于铺设水管的工程费用为每千米15000元,是一个定值,现在要在CD上选择水厂位置,使铺设水管的费用最省,意思是在CD上找一点P,使AP与BP的和最小,设A′是A的对称点,使AP+BP最短就是使A′P+BP最短.
解答:解:解:如图所示:延长AC到点A′,使CA′=AC;连接BA′交CD于点P,
点P就是所选择的位置.
在直角三角形BA′N中,
BN=3+1=4,A′N=3,
∴A′B=
BN2+A′N2
=
32+42
=5(千米),
∴最短路线AP+BP=A′B=5(km),
最省的铺设管道的费用为
W=5×15000=75000(元)
答:最省的铺设管道的费用是75000元.
点评:此题主要考查了最短路径问题,解这类问题的关键是将实际问题抽象或转化为几何模型,把两条线段的和转化为一条线段,运用三角形三边关系解决.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读理解题:
几百年前的某一天,数字王国的国王召集他的臣民们开会.整数、分数等大批臣民纷纷到场,一时间会场里你推我挤,熙熙嚷嚷,吵个不休.国王非常生气,就想了一个办法,让他们排排站,他画了一条直线,指定直线上的某点O为数零的位置,叫原点,并且规定向右的方向为正方向,负整数和正整数分别站在原点左右两侧指定的位置上,正分数和负分数在数O的指挥下也找到了自己的位置,这时±
2
,±,±…,还有π等无理数不干了:“国王,我们站在哪里呢?”“别着急,直线上有你们的位置”.于是国王亲自动手找到了他们各自的位置.这时这条直线排满了有理数、无理数,国王下令:“这条直线就叫做数轴吧.”
(1)请你画一条数轴.
(2)在你所画的数轴上,你能找出
2
3
5
的位置吗?怎样找到的?
(3)-
2
,-
3
,-
5
的位置呢?
(4)通过阅读以上材料和解题,你明白了什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•竹溪县模拟)阅读理解题:
我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.
定义:如果ab=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作logaN=b.例如:因为23=8,所以log28=3.
(1)填空:log381=
4
4
,log22=
1
1
,log41=
0
0

(2)如果logx16=4,求x的值.

查看答案和解析>>

科目:初中数学 来源:2012届广东珠海紫荆中学九年级中考三模数学试卷(带解析) 题型:解答题

阅读理解题:定义:如果一个数的平方等于-1,记为i2=-1,这个数i叫做虚数单位.那么形如a+bi(a,b为实数)的数就叫做复数, a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3-4i)=5-3i.
【小题1】填空:i3=_____,i4="_______" ;
【小题2】计算:①;②
【小题3】若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:
已知:(x+y)+3i=(1-x)-yi,(x,y为实数),求x,y的值.
【小题4】试一试:请利用以前学习的有关知识将化简成a+bi的形式

查看答案和解析>>

科目:初中数学 来源:期中题 题型:解答题

阅读理解题:【几何模型】
条件:如图,A、B是直线l同旁的两个定点,问题:在直线l上确定一点P,使PA+PB的值最小。
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′P+PB=A′B,由“两点之间,线段最短”可知,点P即为所求的点。
【模型应用】
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.求出PB+PE的最小值。(画出示意图,并解答)
(2)如图2,∠AOB=45°,P是∠AOB内一定点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值。(要求画出示意图,写出解题过程)

查看答案和解析>>

同步练习册答案