精英家教网 > 初中数学 > 题目详情
18.解方程(组)
①4x+3=2(x-1)+1                 
②$\left\{\begin{array}{l}{x-2y=0}\\{3x+2y=8}\end{array}\right.$.

分析 ①方程去括号,移项合并,把x系数化为1,即可求出解;
②方程组利用加减消元法求出解即可.

解答 解:①去括号得:4x+3=2x-2+1,
移项合并得:2x=-4,
解得:x=-2;
②$\left\{\begin{array}{l}{x-2y=0①}\\{3x+2y=8②}\end{array}\right.$,
①+②得:4x=8,
解得:x=2,
把x=2代入①得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$.

点评 此题考查了解二元一次方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.在如图所示的条件中,可以判断两条直线互相垂直的是(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.因式分解:
(1)x2-4x+4=(x-2)2
(2)2a2+4a+2=2(a+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知a为非正整数,且方程组$\left\{\begin{array}{l}{x+y=3}\\{x-2y=a-3}\end{array}\right.$的解为正数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.定义:若两条抛物线的对称轴相同则称这两条抛物线为同轴抛物线.
(1)下列关于抛物线的两个命题:
①若$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,则抛物线y=a1x2+b1x+c1与抛物线y=a2x2+b2x+c2为同轴抛物线.
②若抛物线y=a1x2+b1x+c1与抛物线y=a2x2+b2x+c2为同轴抛物线,则$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{b}_{1}}{{b}_{2}}$,
判断上述命题是否是真命题?若是真命题,请说明理由;若是假命题,请举一个反例;
(2)如图,抛物线l1:y=$\frac{1}{2}$x2-4x+9与抛物线l2:y=ax2+bx是同轴抛物线,顶点分别为P,Q,过点Q作直线AB∥x轴,交抛物线l1于A,B两点,且∠APB=90°,求l2的表达式;
(3)对于抛物线l1:y=$\frac{1}{2}$x2-4x+9上任意一点M(m,n),都有点N(2m,2m+n)在抛物线l3上,试说明抛物线l3与抛物线l1是同轴抛物线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,顶点为(1,4)的抛物线y=ax2+bx+c与直线y=$\frac{1}{2}$x+n交于点A(2,2),直线y=$\frac{1}{2}$x+n与y轴交于点B与x轴交于点C
(1)求n的值及抛物线的解析式
(2)P为抛物线上的点,点P关于直线AB的对称轴点在x轴上,求点P的坐标
(3)点D为x轴上方抛物线上的一点,点E为轴上一点,以A、B、E、D为顶点的四边为平行四边形时,直接写出点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知:如图,一次函数y=kx+b的图象与x轴负半轴相交于点A,与y正半轴相交于点B,与反比例函数y=$\frac{m}{x}$图象的一个交点为C(2,4),且 AB=BC.
(1)求一次函数和反比例函数的表达式;
(2)若以A、C、O、P为顶点的四边形是平行四边形,直接写出点P的坐标为(4,4)、(0,4)、(-4,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,在正方形ABCD中,点M是BC边上一点,连结AM,过M作MN⊥AM交CD于E,并且AM=MN,连结AN交DC于点F,AG⊥MF,垂足为点G.

(1)求证:AG=AB;
(2)求证:△EFN∽△MFA;
(3)如图2,若点M是BC中点,求$\frac{DF}{FC}$的值.

查看答案和解析>>

同步练习册答案