精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,ABC的位置如图所示.

(1)分别写出以下顶点的坐标:A( )B( )C( ).

(2)顶点A关于x轴对称的点A的坐标( ),顶点C关于y轴对称的点C的坐标( ).

(3)ABC的面积.

【答案】A(-43)B(30)C(-25);⑵A(-4-3)C(25);⑶10.

【解析】

1)根据平面直角坐标系即可求得答案.

2)根据点关于x轴对称的特征:横坐标相同,纵坐标互为相反数;点关于y轴对称的特征:横坐标互为相反数,纵坐标不变;依次即可得出答案.

3)将图中ABC分割成一个长方形减去三个三角形的面积即可得出答案.

(1)分别写出ABC各个顶点的坐标:A(-43)B(30)C(-25).

2)顶点A关于x轴对称的点A的坐标(-4-3),顶点C关于y轴对称的点C的坐标(25).

3)如图:

=

=

=

故△ABC的面积为10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.

(1)求抛物线的解析式;

(2)当点P运动到什么位置时,△PAB的面积有最大值?

(3)过点Px轴的垂线,交线段AB于点D,再过点PPEx轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是求作AOB的角平分线的尺规作图过程.

已知:如图,钝角AOB.求作:AOB的角平分线.

作法:

OAOB上,分别截取ODOE,使ODOE

分别以DE为圆心,大于的长为半径作弧,AOB内,两弧交于点C

作射线OC.

所以射线OC就是所求作的AOB的角平分线.

在该作图中蕴含着几何的证明过程:

可得:ODOE

可得:_________________

可知:OCOC

_______________(依据:________________________

可得COD=∠COE(全等三角形对应角相等)

OC就是所求作的AOB的角平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac>0;②a﹣b+c<0;③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于﹣1的实数根.其中正确的结论有(  )

A. ①③ B. ②③ C. ①④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=09a+c>3b;8a+7b+2c>0④若点A(﹣3,y1),点B(﹣2,y2),点C(8,y3)在该函数图象上,则y1<y3<y2⑤若方程a(x﹣1)(x﹣5)=﹣3的两根为x1x2,且x1<x2,则x1<﹣l<5<x2,其中正确的结论有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,点为边的中点,点上一点,将沿翻折,使点落在上的点处,若,则__________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线的部分图象如图所示,与x轴的一个交点坐标为,抛物线的对称轴是下列结论中:

方程有两个不相等的实数根;抛物线与x轴的另一个交点坐标为若点在该抛物线上,则

其中正确的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】师徒二人各加工同样多的零件,师父每小时加工200个,徒弟每小时加工125个.若徒弟先加工段时间之后,师父才开始工作师父工作2小时后发现自己加工的零件个数和徒弟加工的个数刚好相同,如图是师徒两人完成的零件个数之差y()与徒弟工作的时间x(小时)之间的函数图象,根据图象回答问题:

1)求出点A的坐标,并解释该点坐标表示的实际意义;

2)求出线段BD的函数表达式;

3)求徒弟这次加工的零件总数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,∠MBA=NDC,下列哪个条件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

同步练习册答案