精英家教网 > 初中数学 > 题目详情
如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:
(1)经过6秒后,BP=
6
6
 cm,BQ=
12
12
cm;
(2)经过几秒后,△BPQ是直角三角形?
(3)经过几秒△BPQ的面积等于10
3
cm2
分析:(1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;
(2)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论;
(3)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可.
解答:解:(1)由题意,得
AP=6cm,BQ=12cm.
∵△ABC是等边三角形,
∴AB=BC=12cm,
∴BP=12-6=6cm.

(2)∵△ABC是等边三角形,
∴AB=BC=12cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=12-x,BQ=2x,
∴12-x=2×2x,
∴x=
12
5

当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12-x),
x=6
答6秒 或
12
5
秒时,△BPQ是直角三角形;

(3)作QD⊥AB于D,
∴∠QDB=90°,
∴∠DQB=30°,
∴DB=
1
2
BQ=x,
在Rt△DBQ中,由勾股定理,得
DQ=
3
x,
(12-x)
3
x
2
=10
3

解得;x1=10,x2=2,
∵x=10时,2x>12,故舍去
∴x=2.
答:经过2秒△BPQ的面积等于10
3
cm2
故答案为:6、12.
点评:本题考查了动点问题的运用,等边三角形的性质的运用,30°的直角三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时建立根据三角形的面积公式建立一元二次方程求解是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为(  )
A、9B、12C、15D、18

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为(  )
A、
1
3
B、
1
2
C、
2
2
D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在边长为1的小正方形组成的方格中,tan∠1的值为(  )
A、2
B、
1
2
C、
5
5
D、
2
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于G、F点. 则图标中阴影部分图形AEGFB的面积为(  )
A、
3
4
(2-
3
)
B、
3
-1
2
C、
3
3
D、1-
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雨花台区一模)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则sin∠BAC的值为(  )

查看答案和解析>>

同步练习册答案