Èçͼ£®Å×ÎïÏßy=-x2-2x+3ÓëxÖáÏཻÓÚµãAºÍµãB£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©ÇóµãA¡¢µãBºÍµãCµÄ×ø±ê£®
£¨2£©ÇóÖ±ÏßACµÄ½âÎöʽ£®
£¨3£©ÉèµãMÊǵڶþÏóÏÞÄÚÅ×ÎïÏßÉϵÄÒ»µã£¬ÇÒS¡÷MAB=6£¬ÇóµãMµÄ×ø±ê£®
£¨4£©ÈôµãPÔÚÏ߶ÎBAÉÏÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶È´Ó B ÏòAÔ˶¯£¨²»ÓëB£¬AÖغϣ©£¬Í¬Ê±£¬µãQÔÚÉäÏßACÉÏÒÔÿÃë2¸öµ¥Î»³¤¶ÈµÄËٶȴÓAÏòCÔ˶¯£®ÉèÔ˶¯µÄʱ¼äΪt¾«Ó¢¼Ò½ÌÍøÃ룬ÇëÇó³ö¡÷APQµÄÃæ»ýSÓëtµÄº¯Êý¹Øϵʽ£¬²¢Çó³öµ±tΪºÎֵʱ£¬¡÷APQµÄÃæ»ý×î´ó£¬×î´óÃæ»ýÊǶàÉÙ£¿
·ÖÎö£º£¨1£©Áîy=0ÇóµÃÅ×ÎïÏßÓëºáÖáµÄ½»µã×ø±ê£¬Áîx=0ÇóµÃͼÏóÓëyÖáµÄ½»µã×ø±ê¼´¿É£®
£¨2£©ÀûÓÃÒÑÖªµÄÁ½µãµÄ×ø±ê¸ù¾Ý´ý¶¨ÏµÊý·¨ÇóµÃÒ»´Îº¯ÊýµÄ½âÎöʽ¼´¿É£®
£¨3£©Éè³öµãMµÄ×ø±êΪ£¨x£¬-x2-2x+3£©£¬È»ºó±íʾ³öÆäÃæ»ý
1
2
(-x2-2x+3)¡Á4
=6£¬½âµÃ¼´¿É£®
£¨4£©ÓÉÌâÒ⣬µÃAB=4£¬PA=4-t£¬¸ù¾ÝAO=3£¬CO=3£¬µÃµ½¡÷AOCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬È»ºó¸ù¾ÝAQ=2t£¬ÇóµÃQµãµÄ×Ý×ø±êΪ
2
t£¬×îºóÇó³öSÓëtµÄº¯Êý¹ØϵʽºóÀûÓöþ´Îº¯ÊýµÄÐÔÖÊÇó³öSµÄ×î´óÖµ£®
½â´ð£º½â£º£¨1£©Áî-x2-2x+3=0£¬£¨x+3£©£¨x-1£©=0£¬x1=-3£¬x2=1£¬
A£¨-3£¬0£©B£®£¨1£¬0£©£¬C£¨0£¬3£©£»

£¨2£©ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¬
ÓÉÌâÒ⣬µÃ
-3k+b=0
b=3
£¬
½âÖ®µÃ
k=1
b=3
£¬
¹Êy=x+3£»

£¨3£©ÉèMµãµÄ×ø±êΪ£¨x£¬-x2-2x+3£©£¬
AB=4£¬ÒòΪMÔÚµÚ¶þÏóÏÞ£¬ËùÒÔ-x2-2x+3£¾0£¬
ËùÒÔ
1
2
(-x2-2x+3)¡Á4
=6£¬
½âÖ®£¬µÃx1=0£¬x2=-2£¬
µ±x=0ʱ£¬y=3£¬£¨²»ºÏÌâÒ⣩
µ±x=-2ʱ£¬y=3£®
ËùÒÔMµãµÄ×ø±êΪ£¨-2£¬3£©£»

£¨4£©ÓÉÌâÒ⣬µÃAB=4£¬PA=4-t£¬
¡ßAO=3£¬CO=3£¬
¡à¡÷AOCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬AQ=2t£¬
ËùÒÔQµãµÄ×Ý×ø±êΪ
2
t£¬
S=
1
2
¡Á
2
t¡Á(4-t)=-
2
2
t2+2
2
t
£¨0£¼t£¼4£©
¡ßS=-
2
2
(t2-4t+4-4)=-
2
2
(t-2)2+2
2
£¬
¡àµ±t=2ʱ£¬¡÷APQ×î´ó£¬×î´óÃæ»ýÊÇ2
2
£®
µãÆÀ£º±¾ÌâÊǶþ´Îº¯ÊýµÄ×ÛºÏÌâÐÍ£¬ÆäÖÐÉæ¼°µ½µÄ֪ʶµãÓÐÅ×ÎïÏߵĶ¥µã¹«Ê½ºÍÈý½ÇÐεÄÃæ»ýÇ󷨣®ÔÚÇóÓйض¯µãÎÊÌâʱҪעÒâ·ÖÎöÌâÒâ·ÖÇé¿öÌÖÂÛ½á¹û£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

26¡¢ÒÑÖª£ºÈçͼ£¬Å×ÎïÏßC1£¬C2¹ØÓÚxÖá¶Ô³Æ£»Å×ÎïÏßC1£¬C3¹ØÓÚyÖá¶Ô³Æ£®Å×ÎïÏßC1£¬C2£¬C3ÓëxÖáÏཻÓÚA¡¢B¡¢C¡¢DËĵ㣻ÓëyÏཻÓÚE¡¢FÁ½µã£»H¡¢G¡¢M·Ö±ðΪÅ×ÎïÏßC1£¬C2£¬C3µÄ¶¥µã£®HN´¹Ö±ÓÚxÖᣬ´¹×ãΪN£¬ÇÒ|OE|£¾|HN|£¬|AB|¡Ù|HG|
£¨1£©A¡¢B¡¢C¡¢D¡¢E¡¢F¡¢G¡¢H¡¢M9¸öµãÖУ¬Ëĸöµã¿ÉÒÔÁ¬½Ó³ÉÒ»¸öËıßÐΣ¬ÇëÄãÓÃ×Öĸд³öÏÂÁÐÌØÊâËıßÐΣºÁâÐÎ
AHBG
£»µÈÑüÌÝÐÎ
HGEF
£»Æ½ÐÐËıßÐÎ
EGFM
£»ÌÝÐÎ
DMHC
£»£¨Ã¿ÖÖÌØÊâËıßÐÎÖ»ÄÜдһ¸ö£¬Ð´´í¡¢¶àд¼Ç0·Ö£©
£¨2£©Ö¤Ã÷ÆäÖÐÈÎÒâÒ»¸öÌØÊâËıßÐΣ»
£¨3£©Ð´³öÄãÖ¤Ã÷µÄÌØÊâËıßÐεÄÐÔÖÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Å×ÎïÏß½»xÖáÓÚµãA£¨-2£¬0£©£¬µãB£¨4£¬0£©£¬½»yÖáÓÚµãC£¨0£¬4£©£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£¬²¢Ð´³ö¶¥µãDµÄ×ø±ê£»
£¨2£©ÈôÖ±Ïßy=x½»Å×ÎïÏßÓÚM£¬NÁ½µã£¬½»Å×ÎïÏߵĶԳÆÖáÓÚµãE£¬Á¬½ÓBC£¬EB£¬EC£®ÊÔÅжϡ÷EBCµÄÐÎ×´£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨3£©ÉèPΪֱÏßMNÉϵĶ¯µã£¬¹ýP×÷PF¡ÎED½»Ö±ÏßMNÉÏ·½µÄÅ×ÎïÏßÓÚµãF£®ÎÊ£ºÔÚÖ±ÏßMNÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔP£¬E£¬D£¬FΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãP¼°ÏàÓ¦µÄµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏߵĶ¥µã×ø±êΪM£¨1£¬4£©£¬ÓëxÖáµÄÒ»¸ö½»µãÊÇA£¨-1£¬0£©£¬ÓëyÖá½»ÓÚµãB£¬Ö±Ïßx=1½»xÖáÓÚµãN£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ¼°µãBµÄ×ø±ê£»
£¨2£©Çó¾­¹ýB¡¢MÁ½µãµÄÖ±ÏߵĽâÎöʽ£¬²¢Çó³ö´ËÖ±ÏßÓëxÖáµÄ½»µãCµÄ×ø±ê£»
£¨3£©ÈôµãPÔÚÅ×ÎïÏߵĶԳÆÖáx=1ÉÏÔ˶¯£¬ÇëÄã̽Ë÷£ºÔÚxÖáÉÏ·½ÊÇ·ñ´æÔÚÕâÑùµÄPµã£¬Ê¹¾«Ó¢¼Ò½ÌÍøÒÔPΪԲÐĵÄÔ²¾­¹ýµãA£¬²¢ÇÒÓëÖ±ÏßBMÏàÇУ¿Èô´æÔÚ£¬Çó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Å×ÎïÏßy=ax2+bx+c½»xÖáÓÚµãA£¨-3£¬0£©£¬µãB£¨1£¬0£©£¬½»yÖáÓÚµãE£¨0£¬-3£©¾«Ó¢¼Ò½ÌÍø£®µãCÊǵãA¹ØÓÚµãBµÄ¶Ô³Æµã£¬µãFÊÇÏ߶ÎBCµÄÖе㣬ֱÏßl¹ýµãFÇÒÓëyÖáƽÐУ®Ö±Ïßy=-x+m¹ýµãC£¬½»yÖáÓÚDµã£®
£¨1£©ÇóÅ×ÎïÏߵĺ¯Êý±í´ïʽ£»
£¨2£©µãKΪÏ߶ÎABÉÏÒ»¶¯µã£¬¹ýµãK×÷xÖáµÄ´¹ÏßÓëÖ±ÏßCD½»ÓÚµãH£¬ÓëÅ×ÎïÏß½»ÓÚµãG£¬ÇóÏ߶ÎHG³¤¶ÈµÄ×î´óÖµ£»
£¨3£©ÔÚÖ±ÏßlÉÏÈ¡µãM£¬ÔÚÅ×ÎïÏßÉÏÈ¡µãN£¬Ê¹ÒÔµãA£¬C£¬M£¬NΪ¶¥µãµÄËıßÐÎÊÇƽÐÐËıßÐΣ¬ÇóµãNµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬Å×ÎïÏßy=ax2+bx+c£¨a¡Ù0£©ÓëxÖáÁ½½»µãÊÇA£¨-1£¬0£©£¬B£¨3£¬0£©£¬ÔòÈçͼ¿ÉÖªy£¼0ʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A¡¢-1£¼x£¼3B¡¢3£¼x£¼-1C¡¢x£¾-1»òx£¼3D¡¢x£¼-1»òx£¾3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸