精英家教网 > 初中数学 > 题目详情

【题目】某农场拟建三件矩形饲养室,饲养室一面靠现有墙(墙可用长≤20m),中间用两道墙隔开,已知计划中的建筑材料可建围墙的总长为60m,设饲养室宽为x(m),总占地面积为y(m2)(如图所示).

(1)y关于x的函数表达式,并直接写出自变量x的取值范围;

(2)三间饲养室占地总面积有可能达到210m2?请说明理由。

【答案】(1)y=x(604x)=4x2+60x10x<15;(2)不能

【解析】

1)设饲养室宽为x,长为604x,根据长方形面积公式即可.

2)令y=210求出x,根据(1)中x的范围即可判断.

(1)设饲养室宽为x(m),则长为(60-4x)m

y=x(604x)=4x2+60x

0<604x≤20

10≤x15

(2)不能,理由如下:

y=210时,4x2+60x=210

解得:

,且

∴不能.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=4,BC=6,B=60°,将ABC沿射线BC的方向平移,得到A′B′C′,再将A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为(  )

A.4,30° B.2,60° C.1,30° D.3,60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A的坐标为(1),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为( )

A.(0,﹣2)B.(1,﹣)C.(20)D.(,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°,∠B=30°,以点A为圆心,任意长为半径画弧,分别交ABAC于点MN,再分别以点MN为圆心,大于MN长为半径画弧,两弧交于点P,连结AP并延长,交BC于点D,则下列四个结论中:①AD是∠BAC的平分线;②∠ADC=60°;③点DAB的中垂线上;④SDACSABC=13.正确的有(

A.只有①②③B.只有①②④C.只有①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过AB两点,在第一象限的抛物线上取一点D,过点DDCx轴于点C,交直线AB于点E

1)求抛物线的函数表达式

2)是否存在点D,使得BDEACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;

3)如图2F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DFFG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中, MBC边上的中点, D是射线AM上的一个动点,以CD为一边且在CD的下方作等边△CDE,连接BE

1)填空:若DM重合时(如图1∠CBE= 度;

2)如图2,当点D在线段AM上时(点D不与AM重合),请判断(1)中结论是否成立?并说明理由;

3)在(2)的条件下,如图3,若点PQBE的延长线上,且CP=CQ=4AB=6,试求PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,点C圆外一点,OC垂直于弦AD,垂足为点FOC交⊙O于点E,连接AC,∠BED=∠C

1)判断AC与⊙O的位置关系,并证明你的结论;

2)是否存在BE平分∠OED的情況?如果存在,求此时∠C的度数;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一块等边三角形钢板ABC的边长为60厘米.

1)用尺规作图能从这块钢板上截得的最大圆(作出图形,保留作图痕迹),并求出此圆的半径.

2)用一个圆形纸板完全覆盖这块钢板,这个圆的最小半径是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在RtABC中,ACB=90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F.

(1)求证:AC是O的切线;

(2)若BF=6,O的半径为5,求CE的长.

查看答案和解析>>

同步练习册答案