精英家教网 > 初中数学 > 题目详情
18.观察下列有规律的数:$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{12}$,$\frac{1}{20}$,$\frac{1}{30}$,$\frac{1}{42}$…根据规律可知第n个数是$\frac{1}{n(n+1)}$(n是正整数).

分析 分子都是1,分母拆成两个连续自然数的乘积,可得规律.

解答 解:∵第1个数$\frac{1}{2}$=$\frac{1}{1×2}$,
第2个数$\frac{1}{6}$=$\frac{1}{2×3}$,
第3个数$\frac{1}{12}$=$\frac{1}{3×4}$,
第4个数$\frac{1}{20}$=$\frac{1}{4×5}$,

∴第n个数为$\frac{1}{n(n+1)}$,
故答案为:$\frac{1}{n(n+1)}$.

点评 此题考查数字的变化规律,解题的关键是根据所给出的数据找出之间的运算规律,利用规律解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.在△ABC中,AB=AC,AD⊥BC于点D,DE∥AB交AC于点E,若∠ADE=25°,则∠BAC的度数为50°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知:抛物线有=-x2+bx+c经过A(-1,0)、B(5,0)两点,顶点为P.求:
(Ⅰ)求b,c的值;
(Ⅱ)求△ABP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.四边形ABCD中,AB=$\sqrt{6}$,BC=5-$\sqrt{3}$,CD=6,∠ABC=135°,∠BCD=120°,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为$\widehat{AD}$的中点,连接DE,EB.
(1)求证:四边形BCDE是平行四边形;
(2)已知图中阴影部分面积为12π,求⊙O的半径r.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,△ABC中,∠ACB=90°,过点A作射线AP⊥AB,点D是线段AC上一动点(不与点A、C重合),连接BD,过点D作DE⊥BD,交射线AP于点E.
(1)如图①,当∠BAC=45°时,则线段AE与线段CD的数量关系为AE=$\sqrt{2}$CD;
(2)如图②,当∠BAC=30°时,猜想线段AE与线段CD的数量关系,并说明理由;
(3)当∠BAC=α时,直接写出线段AE与线段CD的数量关系(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)
(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.小军同学拿着边长为acm的等边三角形硬纸片从图示的位置开始在数轴上顺时针无滑动地向右滚动,当三角形的一个顶点落在x=b处时,停止滚动,且(a-1)2+|b-5|=0.
(1)求a、b的值.
(2)落在x=b处的点是△ABC的哪个顶点?说明理由.
(3)小军测得△MND的边MN上的高为$\frac{1}{2}$cm,将△MND以每秒3cm的速度沿高的方向向上移动2秒,这时△MND扫过的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.(1)已知:如图1,在矩形ABCD中,M为边AD的中点,求证:△ABM≌△DCM;
(2)如图2,AB与⊙O相切于C,AO=BO,AB=16,⊙O的半径为6,求OA的长.

查看答案和解析>>

同步练习册答案