【题目】如图,在平面直角坐标系中, AB=AC=10,线段BC在轴上,BC=12,点B的坐标为(-3,0),线段AB交轴于点E,过A作AD⊥BC于D,动点P从原点出发,以每秒3个单位的速度沿轴向右运动,设运动的时间为秒.
(1)当△BPE是等腰三角形时,求的值;
(2)若点P运动的同时,△ABC以B为位似中心向右放大,且点C向右运动的速度为每秒2个单位,△ABC放大的同时高AD也随之放大,当以EP为直径的圆与动线段AD所在直线相切时,求的值和此时点C的坐标.
【答案】(1)t=或t=1或t=;(2)当t=1时⊙F与动线段AD所在直线相切,此时C(11,0).
【解析】
(1)首先求出直线AB的解析式,进而分别利用①当BE=BP时,②当EB=EP时,③当PB=PE时,得出t的值即可;
(2)首先得出△PGF∽△POE,再利用在Rt△EOP中:EP2=OP2+EO2,进而求出t的值以及C点坐标.
(1)∵AB=AC,AD⊥BC,
∴BD=CD=6,
∵AB=10,∴AD=8,∴A(3,8),
设直线AB的解析式为:y=kx+b,则,
解得:,
∴直线AB的解析式为:y=x+4,
∴E(0,4),
∴BE=5,
当△BPE是等腰三角形有三种情况:
①当BE=BP时,3+3t=5,解得:t=;
②当EB=EP时,3t=3,解得:t=1;
③当PB=PE时,
∵PB=PE,AB=AC,∠ABC=∠PBE,
∴∠PEB=∠ACB=∠ABC,
∴△PBE∽△ABC,
∴,
∴,解得:t=,
综上:t=或t=1或t=;
(2)由题意得:C(9+2t,0),
∴BC=12+2t,BD=CD=6+t,OD=3+t,
设F为EP的中点,连接OF,作FH⊥AD,FG⊥OP,
∵FG∥EO,
∴△PGF∽△POE,
∴PG=OG=t,FG=EO=2,∴F(t,2),
∴FH=GD=OD﹣OG=3+t﹣t=3﹣t,
∵⊙F与动线段AD所在直线相切,FH=EP=3﹣t,
在Rt△EOP中:EP2=OP2+EO2
∴4(3﹣t)2=(3t)2+16
解得:t1=1,t2=﹣(舍去),
∴当t=1时⊙F与动线段AD所在直线相切,此时C(11,0).
科目:初中数学 来源: 题型:
【题目】已知∠ACD=90°,AC=DC,MN是过点A的直线,DB⊥MN于点B.
(1)如图,求证:BD+AB=BC;
(2)直线MN绕点A旋转,在旋转过程中,当∠BCD=30°,BD=时,求BC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=CB,D是边AC的中点,过点D做DE⊥BC于E.
(1)以边AB为直径作⊙O,作图要求:尺规作图,保留作图痕迹,不写作法;
(2)在(1)条件下,判断DE与圆O是否相切?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.
解答下列问题:
(1)①填空:△ACE∽_________∽___________;
②求证:△CDE∽△CBA;
(2)求的值;
(3)若点D在∠BAC的平分线上,判断四边形AFDE的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com