精英家教网 > 初中数学 > 题目详情

已知:△ABC(如下图所示).

求作:△ABC的内切圆.

答案:
解析:

  作法:(1)作∠B,∠C的平分线BE和CF,交点为I(如上图所示).

  (2)过I作ID⊥BC,垂足为D.

  (3)以I为圆心,以ID为半径作⊙I.

  则⊙I就是所求作的圆.

  分析:作圆的关键是确定圆心,因为三角形的内切圆与三边都相切,所以圆心(三角形的内心)到三边的距离相等.因此△ABC的内切圆的圆心既要在∠B的平分线上,又要在∠C的平分线上.显然这两条角平分线的交点到三边的距离相等,是三角形的内心.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl
求证:△ABC≌△A1B1C1
(请你将下列证明过程补充完整.)
证明:分别过点B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1
则∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1
∴△BCD≌△B1C1D1
∴BD=B1D1
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

24、阅读材料,解决问题.
小聪在探索三角形中位线性质定理证明的过程中,得到了如下启示:一条线段经过另一线段的中点,则延长前者,并且长度相等,就能构造全等三角形.如图,D是△ABC的AC边的中点,E为AB上任一点,延长ED至F,使DF=DE,连接CF,则可得△CFD≌△AED,从而把△ABC剪拼成面积相等的四边形BCFE.你能从小聪的反思中得到启示吗?
(1)如图1,已知△ABC,试着剪一刀,使得到的两块图形能拼成平行四边形.
①把剪切线和拼成的平行四边形画在图1上,并指出剪切线应符合的条件.
②思考并回答:要使上述剪拼得到的平行四边形成为矩形,△ABC的边或角应符合什么条件?菱形呢?正方形呢?(直接写出用符号表示的条件)
(2)如图2,已知锐角△ABC,试着剪两刀,使得到的三块图形能拼成矩形,把剪切线和拼成的矩形画在图2上,并指出剪切线应符合的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•西城区二模)阅读下列材料
小华在学习中发现如下结论:
如图1,点A,A1,A2在直线l上,当直线l∥BC时,S△ABC=SA1BC=SA2BC
请你参考小华的学习经验画图(保留画图痕迹):
(1)如图2,已知△ABC,画出一个等腰△DBC,使其面积与△ABC面积相等;
(2)如图3,已知△ABC,画出两个Rt△DBC,使其面积与△ABC面积相等(要求:所画的两个三角形不全等);
(3)如图4,已知等腰△ABC中,AB=AC,画出一个四边形ABDE,使其面积与△ABC面积相等,且一组对边DE=AB,另一组对边BD≠AE,对角∠E=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读:
如图,已知在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,AC=A′C′.那么△ABC≌△A′B′C′.

说明过程如下:
把△ABC放到△A′B′C′上,使∠A的顶点与∠A′的顶点重合;由于∠A=∠A′,因此可以使射线AB、AC分别落在射线A′B′、A′C′上.因为AB=A′B′,AC=A′C′,所以点B、C分别与点B′、C′重合,这样△ABC和△A′B′C′重合,即△ABC≌△A′B′C′.
于是,得全等三角形判定方法1:在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等(简记为S.A.S).
请完成下面问题的填空:
如图,已知在△ABC和△A′B′C′中,∠A=∠A′,AB=A′B′∠B=∠B′.
那么△ABC≌△A′B′C′.  

说明过程如下:
把△ABC放到△A′B′C′上,因为AB=A′B′,可以使
AB
AB
A′B′
A′B′
重合,并使点C与C′在AB(A′B′)的同一侧,这时点A与点A′重合,点
C
C
与点
C′
C′
重合.由于∠A=∠A′,因此射线
AC
AC
与射线
A′C′
A′C′
叠合;由于
∠B=∠B′,因此射线
BC
BC
与射线
B′C′
B′C′
叠合.于是点C(射线AC与BC的交点)与点C(射线A′C′与B′C′的交点)重合.这样
△ABC
△ABC
△A′B′C′
△A′B′C′
重合,即△ABC≌△A′B′C′.
于是,得全等三角形判定方法2:在两个三角形中,
如果两角和它们的夹边对应相等,那么这两个三角形全等(简记为ASA)
如果两角和它们的夹边对应相等,那么这两个三角形全等(简记为ASA)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB∥CD,EB∥CF,证明∠1=∠2的推理如下,请完成填空.
证明:∵AB∥CD,EB∥CF(已知)
∴∠ABC=∠BCD  (两直线平行,内错角相等)
∠EBC
∠EBC
=
∠BCF
∠BCF
(  )
∴∠ABC-∠EBC=∠BCD-BCF,
∠1
∠1
=
∠2
∠2

查看答案和解析>>

同步练习册答案