精英家教网 > 初中数学 > 题目详情

已知:如图,抛物线轴的负半轴相交于点,与轴相交于点(0,3),且∠的余切值为

(1)求该抛物线的表达式,并写出顶点的坐标;

(2)设该抛物线的对称轴为直线,点关于直线的对称点为与直线相交于点.点在直线上,如果点是△的重心,求点的坐标;

(3)在(2)的条件下,将(1)所求得的抛物线沿轴向上或向下平移后顶点为点,写出平移后抛物线的表达式.点在平移后的抛物线上,且△的面积等于△的面积的2倍,求点的坐标.

 

【答案】

(1),(1,4)(2)(1,6).(3)

【解析】(1)由点,可知

在Rt△中,

即得点(-1,0).                                                       (1分)

由抛物线经过点

 

解得 

所以,所求抛物线的表达式为.                               (2分)

顶点的坐标为(1,4).                                                  (1分)

(2)该抛物线的对称轴直线.                                           (1分)

由题意,可知点的坐标为(2,3),且点(1,3)为的中点.

.                                                              (1分)

∵点是△的重心,

即得.                                                            (1分)

于是,由点在直线上,得点的坐标为(1,6).                          (1分)

(3)由,可知将抛物线向上平移2个单位,

得平移后的抛物线的表达式为.                               (1分)

设点的坐标为(mn).

和△上高分别为、1,

于是,由△的面积等于△的面积的2倍,

解得

∵点在抛物线上,

.                                                        (2分)

∴点的坐标分别为.                               (1分)

(1)求出OB,根据已知得出tan∠OAB=,求出OA,即可求出A的坐标,代入抛物线即可求出抛物线的表达式,化成顶点式即可求出D的坐标;

(2)求出C的坐标,求出E的坐标,得出DE,求出PD、PE,即可得出P的坐标;

(3)根据P、D的坐标得出抛物线相上平移两个单位即可得出新抛物线,设点M的坐标为(m,n).求出△MPD和△BPD边PD上高分别为|m-1|、1,根据面积得出|m-1|=2,求出m,代入抛物线求出n即可.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•浦江县模拟)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0),点B的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线 与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京师大附中九年级上学期期中考试数学卷 题型:解答题

 已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

1.(1)求的面积.

2.(2)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2013届河南省周口市初一下学期第九章一元一次不等式组检测题 题型:解答题

已知:如图,抛物线轴交于点,与轴交于两点,点的坐标为

(1)求抛物线的解析式及顶点的坐标;

(2)设点是在第一象限内抛物线上的一个动点,求使与四边形面积相等的四边形的点的坐标;

(3)求的面积.

 

查看答案和解析>>

同步练习册答案