精英家教网 > 初中数学 > 题目详情

如图中的两条直线L1,L2的交点坐标可以看做方程组________的解.


分析:因为函数图象交点坐标为两函数解析式组成的方程组的解.因此本题应该先用待定系数法求出两条直线的解析式,联立两直线解析式所组成的方程组即为所求的方程组.
解答:直线L1过点(0,-3),(2,2);可求得直线L1的解析式为y=x-3;
同理可求得直线L2的解析式为y=-x+4.
因此两条直线L1,L2的交点坐标可以看做方程组,即的解.
点评:在同一平面直角坐标系中,两个一次函数图象的交点坐标就是相应的二元一次方程组的解.反过来,以二元一次方程组的解为坐标的点,一定是相应的两个一次函数的图象的交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

探索勾股定理时,我们发现“用不同的方式表示同一图形的面积”可以解决线段和(或差)的有关问题,这种方法称为面积法.请你运用面积法求解下列问题:在等腰三角形ABC中,AB=AC,BD为腰AC上的高.
(1)若BD=h,M是直线BC上的任意一点,M到AB、AC的距离分别为h1,h2
A、若M在线段BC上,请你结合图形①证明:h1+h2=h;
B、当点M在BC的延长线上时,h1,h2,h之间的关系为
 
.(请直接写出结论,不必证明)
(2)如图②,在平面直角坐标系中有两条直线l1:y=
34
x+6;l2:y=-3x+6.若l2上的一点M到l1的距离是3,请你利用以上结论求解点M的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h1、h2
(1)请你结合图形来证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;
(3)利用以上结论解答,如图在平面直角坐标系中有两条直线l1:y=
3
4
x+3,l2:y=-3x+3,若l2上的一点M到l1的距离是
3
2
.求点M的坐标.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是
 
;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=
34
x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图中的两条直线L1,L2的交点坐标可以看做方程组
 
的解.

查看答案和解析>>

同步练习册答案