【题目】如图,已知抛物线与轴交于,两点(点位于点左侧),与轴交于点,连接.点为抛物线的顶点,点为.
(1)点是第四象限内抛物线上的一点,过点作轴交抛物线于点,作轴于点,作轴于点,点在点右边.点是直线上一个动点,点是直线上一个动点,当四边形的周长最大时,求的最小值;
(2)如图2,将原抛物线绕其对称轴与轴的交点旋转得新的抛物线,点,的对应点分别记为,,把抛物线沿直线平移,,的对应点分别记为,是否存在点,使得是以为腰的等腰三角形?若存在,请直接写出的坐标;若不存在,请说明理由.
【答案】(1)的最小值为;(2)存在,或或.
【解析】
(1) 设,则.然后再确定抛物线的对称轴以及开口方向,即可确定最值;
(2)由题意知,抛物线绕其对称轴与轴的交点旋转得抛物线,点的对应与点重合.设,,然后利用勾股定理得到;然后就和分别解答即可.
解:(1),,,.
设,则.
抛物线的对称轴为,
.
矩形的周长
.
此函数的图象为抛物线,其对称轴为,且.
,
当时,矩形的周长最大,此时点的坐标为.
作点关于的对称点,
,
作于交于,此时最小,的最小值.
延长交于,可求得,,
的最小值.
(2)由题意知,抛物线绕其对称轴与轴的交点旋转得抛物线,点的对应与点重合.
设,,
则,
,
①当时,
即
.
化简后解得.
②当时,,
即.
化简后解得.
综上所述,或或.
科目:初中数学 来源: 题型:
【题目】某文具零售店准备从批发市场选购A、B两种文具,批发价A种为12元/件,B种为8元/件.若该店零售A、B两种文具的日销售量y(件)与零售价x(元/件)均成一次函数关系.(如图)
(1)求y与x的函数关系式;
(2)该店计划这次选购A、B两种文具的数量共120件,所花资金不超过1200元,并希望全部售完获利不低于178元,若按A种文具日销售量6件和B种文具每件可获利1元计算,则该店这次有哪几种进货方案?
(3)若A种文具的零售价比B种文具的零售价高4元/件,求两种文具每天的销售利润(元)与A种文具零售价x(元/件)之间的函数关系式,并说明A、B两种文具零售价分别为多少时,每天销售的利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.
(1)求证:四边形BEDF是平行四边形;
(2)当四边形BEDF是菱形时,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某年级共有名学生.为了解该年级学生,两门课程的学习情况,从中随机抽取名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理描述和分析下面给出了部分信息.
①课程成绩的频数分布直方图如下(数据分成组:,,,,,);
②课程成绩在这一组的数据为:
③,两门课程成绩的平均数、中位数、众数如下:
课程 | 平均数 | 中位数 | 众数 |
根据以上信息,回答下列问题:
(1)写出表中的值;
(2)在此次测试中,某学生的课程成绩为分,课程成绩为分,这名学生成绩排名更靠前的课程是_______(填“”或“”),理由是;___________;
(3)假设该年级学生都参加了此次测试,估计课程成绩超过分的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位需采购一批商品,购买甲商品10件和乙商品15件需资金350元,而购买甲商品15件和乙商品10件需要资金375元.
求甲、乙商品每件各多少元?
本次计划采购甲、乙商品共30件,计划资金不超过460元,
最多可采购甲商品多少件?
若要求购买乙商品的数量不超过甲商品数量的,请给出所有购买方案,并求出该单位购买这批商品最少要用多少资金.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老师随机抽查了本学期学生阅读课外书册数的情况,并将抽查结果绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.
(1)条形图中被遮盖的人数为 ,被抽査的学生读书册数的中位数为 .
(2)扇形图中5册所占的圆心角的度数为 ;
(3)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;
(4)随后又补查了另外几人,得知最少的读了6册,将补查数据与之前的数据合并后,发现册数的中位数没改变,求最多补查了几人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物元以上可以获得一次转动转 盘的机会,当转盘停止时指针落在哪一个区域就获得相应的奖品 (指针指向两个扇形的交线时,当作指向右边的扇形),下表是活动进行中的一组统计数据:
转动转盘的次数 | ||||||
落在“铅笔"的次数 | ||||||
落在“铅笔"的频率, (结果保留小数点后两位) |
(1)转动该转盘一次,获得铅笔的概率约为____ ;( 结果保留小数点后一位数字);
(2)铅笔每只元,饮料每瓶元,经统计该商场每天约有名顾各参加抽奖活动,请计算该商场每天需要支出的奖品费用;
(3)在(2)的条件下,该商场想把每天支出的奖品费用控制在元左右,则转盘上“一瓶饮料”区域的圆心角应调整为 度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AM是△ABC的中线,D是线段AM上一点(不与点A重合).DE∥AB交AC于点F,CE∥AM,连结AE.
(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;
(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由.
(3)如图3,延长BD交AC于点H,若BH⊥AC,且BH=AM.
①求∠CAM的度数;
②当FH=,DM=4时,求DH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com