分析 (1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;
(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.
解答 证明:(1)∵AD⊥BC,CE⊥AB,
∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,
∴∠CFD=∠B,
∵∠CFD=∠AFE,
∴∠AFE=∠B
在△AEF与△CEB中,
$\left\{\begin{array}{l}{∠AFE=∠B}\\{∠AEF=∠CEB}\\{AE=CE}\end{array}\right.$,
∴△AEF≌△CEB(AAS);
(2)∵AB=AC,AD⊥BC,
∴BC=2CD,
∵△AEF≌△CEB,
∴AF=BC,
∴AF=2CD.
点评 本题主要考查了全等三角形性质与判定,等腰三角形的性质,运用等腰三角形的性质是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{0.9x=1.1y}\\{y-x=24}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{1.1x=0.9y}\\{x-y=24}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{0.9x=1.1y}\\{x-y=24}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{1.1x=0.9y}\\{y-x=24}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 正方形 | B. | 菱形 | C. | 矩形 | D. | 无法确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 3 | B. | $\frac{15}{4}$ | C. | 5 | D. | $\frac{15}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com