【题目】如图,个边长为的相邻正方形的一边均在同一直线上,点,,,…分别为边,,,…,的中点,的面积为,的面积为,…的面积为,则________.(用含的式子表示)
科目:初中数学 来源: 题型:
【题目】如图,在RtABC 中,ACB 90 , AC 3 ,BC 4 ,点 D在 AB上, AD AC , AF CD 交CD 于点 E ,交CB 于点 F ,则CF 的长是( )
A. 2.5B. 2C. 1.8D. 1.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】几何模型:
条件:如图1,A、B是直线同旁的两个定点.
问题:在直线上确定一点P,使PA+PB的值最小.
方法:作点A关于直线的对称点A′,连接A′B交于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图2,已知平面直角坐标系中两定点A(0,-1),B(2,-1),P为x轴上一动点, 则当PA+PB的值最小时,点P的横坐标是______,此时PA+PB的最小值是______;
(2)如图3,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.由正方形对称性可知,B与D关于直线AC对称,连接BD,则PB+PE的最小值是______;
(3)如图4,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为 ;
(4)如图5,在菱形ABCD中,AB=8,∠B=60°,点G是边CD边的中点,点E、F分别是AG、AD上的两个动点,则EF+ED的最小值是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为24m的篱笆,围成长方形的花圃,且花圃的一边为墙体(墙体的最大可用长度为20m)。
设花圃的面积为AB的长为xm.
(1)求y与x函数关系式,并写出x的取值范围;
(2)x为何值时,y取得最大值?最大值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某市近郊有一块长为60米,宽为50米的矩形荒地,地方政府准备在此建一个综合性休闲广场,其中阴影部分为通道,通道的宽度均相等,中间的三个矩形(其中三个矩形的一边长均为a米)区域将铺设塑胶地面作为运动场地.设通道的宽度为x米.
(1)a= (用含x的代数式表示);
(2)若塑胶运动场地总占地面积为 2430平方米,则通道的宽度为多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】据农业农村部消息,国内受猪瘟与猪周期叠加影响,生猪供应量大幅减少,从今年6月起猪肉价格连续上涨一品生鲜超市在6月1日若售出五花肉和排骨,销售额为366元;若售出五花肉和排骨,销售额为186元.
(1)6月1日每千克五花肉和排骨的价格各是多少元?
(2)6月1日五花肉和排骨的销售量分别为、由于猪肉价格持续上涨,11月1日五花肉的销售价格在6月1日的基础上增长了,销售量减少了;排骨的销售价格在6月1日的基础上增加了元,销售量下降了.结果1l月1日的销售额比6月1日的销售额多5100元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个反比例函数y=(k>1)和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,BE⊥x轴于点E,当点P在y=图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化:④△OBA的面积等于四边形ACEB的面积.其中一定正确的是_____.(填序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中, AD是∠BAC的平分线,DF⊥AB,DM⊥AC,垂足分别为F、M,AF=10cm ,BF=6cm ,AC=14cm.动点E以3cm/s的速度从A点向B点运动,动点G以1cm/s的速度从C点向A点运动,当一个点到达终点时,另一个点随之停止运动,设运动时间为t s.当t=__________s时, △DFE与△DMG全等.(写出符合题意的t的所有取值)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com