精英家教网 > 初中数学 > 题目详情
1.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.
(Ⅰ)当直线CD与半圆O相切时(如图①),求∠ODC的度数;
(Ⅱ)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,求∠ODC的度数.

分析 (1)连接OC,因为CD是⊙O的切线,得出∠OCD=90°,由OC=CD,得出∠ODC=∠COD,即可求得.
(2)连接OE,利用等腰三角形及平行线的性质,可求得∠ODC的度数.

解答 解:(1)如图①,连接OC,
∵OC=OA,CD=OA,
∴OC=CD,
∴∠ODC=∠COD,
∵CD是⊙O的切线,
∴∠OCD=90°,
∴∠ODC=45°;

(2)如图②,连接OE.
∵CD=OA,∴CD=OC=OE=OA,
∴∠1=∠2,∠3=∠4.
∵AE∥OC,
∴∠2=∠3.
设∠ODC=∠1=x,则∠2=∠3=∠4=x.
∴∠AOE=∠OCD=180°-2x.
∵∠6=∠1+∠2=2x.
∵OE=OC,∴∠5=∠6=2x.
∵AE∥OC,
∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,
∴x=36°.
∴∠ODC=36°.

点评 本题考查了切线性质,全等三角形,等腰三角形的性质以及平行线的性质等,作出辅助线是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,AB切⊙O于点B,AD交⊙O于点C和点D,点E为$\widehat{DC}$的中点,连接OE交CD于点F,连接BE交CD于点G.
(1)求证:AB=AG;
(2)若DG=DE,求证:GB2=GC•GA;
(3)在(2)的条件下,若tanD=$\frac{3}{4}$,EG=$\sqrt{10}$,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=$\frac{1}{3}$a,在边A1B1、B1C1,C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2、B1B2、C1C2、D1D2=$\frac{1}{3}$A1B1,…,依次规律继续下去,则正方形AnBnCnDn的面积为(  )
A.$\frac{8}{9}{a}^{2}$B.($\frac{4}{9}$)na2C.($\frac{5}{9}$)n-1a2D.($\frac{5}{9}$)na2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,直线AB∥CD,∠1=50°,∠2=110°,则∠E的大小是(  )
A.40°B.50°C.60°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.我们知道,中式窗户的图案非常多样,美轮美奂,在下面几个比较简单的窗户图案中,可以看作是轴对称图形的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,⊙O的直径AB=2,点D在AB的延长线上,DC与⊙O相切于点C,连接AC.若∠A=30°,则CD长为(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若圆锥的主视图为等腰直角三角形,底面半径为1,则圆锥侧面积为$\sqrt{2}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)计算:(-2)2+|-$\sqrt{3}$|-2sin60°-$\sqrt{8}$;
(2)求不等式组$\left\{\begin{array}{l}{2x+1>0}\\{x>2x-5}\end{array}\right.$的正整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.“nice to meet you(很高兴见到你)”,在这段句子的所有英文字母中,字母e出现的概率是$\frac{3}{13}$.

查看答案和解析>>

同步练习册答案