精英家教网 > 初中数学 > 题目详情
(2011•潼南县)如图,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.
(1)求证:AD=AE;
(2)若AD=8,DC=4,求AB的长.
:解:(1)连接AC,
∵AB∥CD,
∴∠ACD=∠BAC,
∵AB=BC,
∴∠ACB=∠BAC,
∴∠ACD=∠ACB,
∵AD⊥DCAE⊥BC,
∴∠D=∠AEC=90°,
∵AC=AC,
∴△ADC≌△AEC,
∴AD=AE;
(2)由(1)知:AD=AE,DC=EC,
设AB=x,则BE=x﹣4,AE=8,
在Rt△ABE中∠AEB=90°,
由勾股定理得:82+(x﹣4)2=x2
解得:x=10,
∴AB=10.
说明:依据此评分标准,其它方法如:过点C作CF⊥AB用来证明和计算均可得分.
:(1)连接AC,证明△ADC与△AEC全等即可;
(2)设AB=x,然后用x表示出BE,利用勾股定理得到有关x的方程,解得即可.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

阅读材料并解答问题
如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,可以得出结论△ABC的面积与△AEG的面积相等.
(1)在图①中的△ABC的直角边AB上任取一点H,连结CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连结EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为   .
(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是   .
(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是   .
  
图①             图②                       图③                      图④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

梯形的高为4厘米,中位线长为5厘米,则梯形的面积为        平方厘米。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

顺次连接矩形四条边的中点,得到的四边形的形状是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,BE⊥DC于E,BC=5,AD:BC=2:5.求ED的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

等腰梯形ABCD中,,那么梯形ABCD的周长是    

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•广元)如图,在直角梯形ABCD中,AD∥BC,BC⊥CD,∠B=60°,BC=2AD,E、F分别为AB、BC的中点.
(1)求证:四边形AFCD是矩形;
(2)求证:DE⊥EF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(9分)已知(如图).是射线上的动点(点与点不重合),是线段的中点.
(1)设的面积为,求关于的函数关系式,并写出自变量的取值范围;
(2)如果以线段为直径的圆与以线段直径的圆外切,求线段的长;
(3)连结,交线段于点,如果以为顶点的三角形与相似,求线段的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

(2011•宁夏)等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是(  )
A.5cmB.6cm
C.7cmD.8cm

查看答案和解析>>

同步练习册答案