精英家教网 > 初中数学 > 题目详情

【题目】ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE.

(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=  度;

(2)设∠BAC=α,BCE=β.

①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;

②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.

【答案】(1)90°;(2)①α+β=180°,理由见解析;②当点D在射线BC上时,α+β=180°;当点D在射线BC的反向延长线上时,α=β.

【解析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.

解:(1)90°.

理由:∵∠BAC=∠DAE,

∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.

即∠BAD=∠CAE.

在△ABD与△ACE中,

AB=AC,∠BAD=∠CAE,AD=AE,

∴△ABD≌△ACE(SAS),

∴∠B=∠ACE.

∴∠B+∠ACB=∠ACE+∠ACB,

∴∠BCE=∠B+∠ACB,

又∵∠BAC=90°,

∴∠BCE=90°;

(2)①α+β=180°,

理由:∵∠BAC=∠DAE,

∴∠BAD+∠DAC=∠EAC+∠DAC.

即∠BAD=∠CAE.

在△ABD与△ACE中,

AB=AC,∠BAD=∠CAE,AD=AE,

∴△ABD≌△ACE(SAS),

∴∠B=∠ACE.

∴∠B+∠ACB=∠ACE+∠ACB.

∴∠B+∠ACB=β,

∵α+∠B+∠ACB=180°,

∴α+β=180°;

②当点D在射线BC上时,α+β=180°;

理由:∵∠BAC=∠DAE,

∴∠BAD=∠CAE,

∵在△ABD和△ACE中,

AB=AC,∠BAD=∠CAE,AD=AE,

∴△ABD≌△ACE(SAS),

∴∠ABD=∠ACE,

∵∠BAC+∠ABD+∠BCA=180°,

∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,

∴α+β=180°;

当点D在射线BC的反向延长线上时,α=β.

理由:∵∠DAE=∠BAC,

∴∠DAB=∠EAC,

∵在△ADB和△AEC中,

AD=AE,∠DAB=∠EAC,AB=AC,

∴△ADB≌△AEC(SAS),

∴∠ABD=∠ACE,

∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,

∴∠BAC=∠BCE,

即α=β.

“点睛”本题考查三角形全等的判定,以及全等三角形的性质;两者综合运用,促进角与角相互转换,将未知角转化为已知角是关键.本题的亮点是由特例引出一般情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个多边形的内角和是1 260°,它的边数是( )
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】线段垂直平分线上的点到这条线段的距离相等.理解这条性质要注意两点:①点一定在上; ②距离指的是点到线段的两个的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为(  )

A. ﹣74 B. ﹣77 C. ﹣80 D .﹣83

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断(

①年用水量不超过180m3的该市居民家庭按第一档水价交费;

②年用水量超过240m3的该市居民家庭按第三档水价交费;

③该市居民家庭年用水量的中位数在150﹣180之间;

④该市居民家庭年用水量的平均数不超过180

A.①③ B.①④ C.②③ D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把函数y=﹣2x+3的图象向下平移4个单位后的函数图象的解析式为(  )

A.y=﹣2x+7B.y=﹣6x+3C.y=﹣2x1D.y=﹣2x5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(-10)×(-8.24)×(-0.1)=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1)-2-(+10);

(2)0-(-3.6);

(3)(-30)-(-6)-(+6)-(-15);

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=-x+3,当0≤x≤2时,y的最大值是

查看答案和解析>>

同步练习册答案