精英家教网 > 初中数学 > 题目详情
18.连接边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,…重复这样的操作,则2016次操作后右下角的小正方形面积是(  )
A.$\frac{1}{2004}$B.${(\frac{1}{2})^{2016}}$C.${(\frac{1}{4})^{2016}}$D.$1-{(\frac{1}{4})^{2016}}$

分析 先计算出边长为1的正方形的面积为12=1,再观察图形通过计算得第1次操作后右下角的小正方形面积=$\frac{1}{4}$,第2次操作后右下角的小正方形面积=$\frac{1}{4}$×$\frac{1}{4}$=($\frac{1}{4}$)2,第3次操作后右下角的小正方形面积=($\frac{1}{4}$)3,…,则第n次操作后右下角的小正方形面积=($\frac{1}{4}$)n,然后把n=2016代入即可.

解答 解:边长为1的正方形的面积为12=1,
∵第1次操作后右下角的小正方形面积=$\frac{1}{4}$,
第2次操作后右下角的小正方形面积=$\frac{1}{4}$×$\frac{1}{4}$=($\frac{1}{4}$)2
第3次操作后右下角的小正方形面积=($\frac{1}{4}$)3

∴第2016次操作后右下角的小正方形面积=($\frac{1}{4}$)2016
故选C.

点评 本题考查了规律型:图形的变化类:通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

8.如图,在?ABCD中,BC=5,AB=3,BE平分∠ABC交AD于点E,交对角线AC于点F,则$\frac{{{S_{△AEF}}}}{{{S_{△CBF}}}}$=$\frac{9}{25}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.解方程:
(1)x2-6x+8=0; 
(2)x2-4x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,小东设计两个直角,来测量河宽DE,他量得AD=2m,BD=3m,CE=12m,则河宽DE=6m.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.八年级数学课上,王老师出示了如下框中的题目.

小聪与同桌小明讨论后,进行了如下解答:
(1)特殊情况•探索结论
当点E为AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE=DB(填“>”,“<”或“=”).

(2)特例启发•解答题目
解:如图2,题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).
提示如下:过点E作EF∥BC,交AC于点F,(请你继续完成以下的解答过程)
(3)拓展结论•设计新题
在等边三角形ABC中,若点E在直线AB上,点D在直线CB上,且ED=EC.若△ABC的边长为2,AE=4,则CD=2或6.(请你直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.实数-$\sqrt{4}$,0,$\frac{22}{7}$,$\root{3}{-125}$,0.1010010001…(两个1之间依次多一个0),$\frac{49}{121}$,$\frac{π}{2}$中,无理数有0.1010010001…(两个1之间依次多一个0),$\frac{π}{2}$,整数有-$\sqrt{4}$,0,$\root{3}{-125}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.(1)若一次函数y=kx+b(k≠0)的图象经过点A(1,1)点B(2,3),求这个函数的解析式;
(2)若一直线与此一次函数的图象交于(-2,m)点,且与y轴的交点的坐标为(0,5),求这条直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读下列材料,回答问题.
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(a+x)2的形式.但是对于二次三项式x2+2ax-3a2,就不能直接分解.小明说,可以在二次三项式中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变,于是有:x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-4a2=[(x+a)+2a][(x+a)-2a]=(x+3a) (x-a);小红说,因为因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可将其分解因式,而且也很简单.
如:(l)x2+5x+6=x2+(3+2)x+3×2=(x+3)(x+2);
( 2)x2-5x-6=x2+(-6+1 )x+(-6)×l=(x-6)(x+l).你认为他们的说法正确吗?
请你利用上述正确的方法,把下列多项式分解因式:
(1)x2-8x+7;
(2)x2+7x-18;
(3)x4+4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,在平面直角坐标系中,点A,B的坐标分别为A(m,0),B(n,0)且m、n满足|m+2|+$\sqrt{5-n}$=0,现同时将点A,B分别向上平移3个单位,再向右平移2个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形OBDC的面积;
(2)如图2,点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合),试探究∠DCP,∠BOP与∠CPO的数量关系,并说明理由;
(3)在四边形OBDC内是否存在一点P,连接PO,PB,PC,PD,使S△PCD=S△PBD;S△POB:S△POC=5:6,若存在这样一点,求出点P的坐标,若不存在,试说明理由.

查看答案和解析>>

同步练习册答案