精英家教网 > 初中数学 > 题目详情

【题目】如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)

(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;
(2)

如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.

【答案】
(1)

解:如图2,

DM=FM,DM⊥FM,

证明:连接DF,NF,

∵四边形ABCD和CGEF是正方形,

∴AD∥BC,BC∥GE,

∴AD∥GE,

∴∠DAM=∠NEM,

∵M是AE的中点,

∴AM=EM,

在△MAD与△MEN中,

∴△MAD≌△MEN,

∴DM=MN,AD=EN,

∵AD=CD,

∴CD=NE,

∵CF=EF,∠DCF=∠DCB=90°,

在△DCF与△NEF中,

∴△MAD≌△MEN,

∴DF=NF,∠CFD=∠EFN,

∵∠EFN+∠NFC=90°,

∴∠DFC+∠CFN=90°,

∴∠DFN=90°,

∴DM⊥FM,DM=FM


(2)

解:猜想:DM⊥FM,DM=FM,

证明如下:如图3,连接DF,NF,连接DF,NF,

∵四边形ABCD是正方形,

∴AD∥BC,

∵点E、B、C在同一条直线上,

∴AD∥CN,

∴∠ADN=∠MNE,

在△MAD与△MEN中,

∴△MAD≌△MEN,

∴DM=MN,AD=EN,

∵AD=CD,

∴CD=NE,

∵CF=EF,

∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,

∴∠DCF=∠NEF,

在△DCF与△NEF中,

∴△MAD≌△MEN,

∴DF=NF,∠CFD=∠EFN,

∵∠CFD+∠EFD=90°,

∴∠NFE+∠EFD=90°,

∴∠DFN=90°,

∴DM⊥FM,DM=FM.


【解析】(1)连接DF,NF,由四边形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,即可得到结论;
(2)连接DF,NF,由四边形ABCD是正方形,得到AD∥BC,由点E、B、C在同一条直线上,于是得到AD∥CN,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,于是结论得到.
【考点精析】本题主要考查了平行四边形的性质和作图-位似变换的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;对应点到位似中心的距离比就是位似比,对应线段的比等于位似比,位似比也有顺序;已知图形的位似图形有两个,在位似中心的两侧各有一个.位似中心,位似比是它的两要素才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】函数yl=x(x≥0), (x>0)的图象如图所示,则结论: ①两函数图象的交点A的坐标为(3,3);
②当x>3时,y2>y1
③当x=1时,BC=8;
④当x逐渐增大时,yl随着x的增大而增大,y2随着x的增大而减小.
其中正确结论的序号是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为a与b、对角线长为c的长方形纸片ABCD,绕点C顺时针旋转90°得到长方形FGCE,连接AF.通过用不同方法计算梯形ABEF的面积可验证勾股定理,请你写出验证的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:

小组

研究报告

小组展示

答辩

91

80

78

81

74

85

79

83

90


(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;
(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):

编号

类型

甲种电子钟

1

-3

-4

4

2

-2

2

-1

-1

2

乙种电子钟

4

-3

-1

2

-2

1

-2

2

-2

1

(1) 计算甲、乙两种电子钟走时误差的平均数;

(2) 计算甲、乙两种电子钟走时误差的方差;

(3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.

(1)直接写出∠NDE的度数.
(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由.

(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.

(1)请判断:FG与CE的数量关系是 , 位置关系是
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.
小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.

(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)
参考小明思考问题的方法,解答下列问题:
(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;
(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k< ),∠AED=∠BCD,求 的值(用含k的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中国汉字听写大会”是由中央电视台和国家语言文学工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习,某校开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字,比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了如图两幅不完整的统计图.
根据以上信息回答下列问题:

(1)本次共随机抽取了名学生的听写结果,听写正确的汉字个数x在范围的人数最多;
(2)补全频数分布直方图;
(3)在扇形统计图中,请计算31≤x≤41所对应的扇形圆心角的大小;
(4)若该校共有1200名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.

查看答案和解析>>

同步练习册答案