精英家教网 > 初中数学 > 题目详情
在Rt△ABC中,∠C=90°,斜边AB边上的高为h,则两直角边的和a+b与斜边及其高的和c+h的大小关系是a+b
 
c+h(填“>”、“=”、“<”).
分析:由于线段的和永远为正,所以可以通过比较两线段的和的平方来比较两线段的和的大小,即平方之差大于零,平方就大,否则就小.
解答:解:∵(c+h)2-(a+b)2
=(c2+2ch+h2)-(a2+2ab+b2),
a2+b2=c2
1
2
ab=
1
2
ch

∴(c2+2ch+h2)-(a2+2ab+b2
=h2>0,
∴a+b<c+h.
故答案为:<.
点评:本题考查了勾股定理的知识,同时题目还渗透了比较两个正数的大小的方法,即:两正数的平方差大于零,前一个正数大于后面的正数,反之亦然.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于E,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知:在Rt△ABC中,∠C=90°,AB=12,点D是AB的中点,点O是△ABC的重心,则OD的长为(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,已知a及∠A,则斜边应为(  )
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求画出图形)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步练习册答案