【题目】如图,在平面直角坐标系中,点C、A分别在x轴、y轴上,AB∥x轴,∠ACB=90°,反比例函数y=(x>0)的图象经过AB的中点M.若点A(0,4)、C(2,0),则k的值为( )
A.16B.20C.32D.40
科目:初中数学 来源: 题型:
【题目】如图,甲楼AB高20米,乙楼CD高10米,两栋楼之间的水平距离BD=30m,为了测量某电视塔EF的高度,小明在甲楼楼顶A处观测电视塔塔顶E,测得仰角为37°,小明在乙楼楼顶C处观测电视塔塔顶E,测得仰角为45°,求该电视塔的高度EF.
(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,( )
A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0
C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).学校对七年级部分学生进行选课调查,得到如图所示的统计图.
(1)根据统计图,本次选课共调查了 名学生;
(2)若该校七年级有960名学生,请计算出选“神奇魔方”的人数;
(3)学校将选“神奇魔方”的学生分成人数相等的A、B、C三个班,小聪、小慧都选择了“神奇魔方”.已知小聪不在A班,用列表法或画树状图法,求小聪和小慧被分到同一个班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的边BC在x轴上,顶点A在y轴的正半轴上,OA=2,OB=1,OC=4.
(1)求过A、B、C三点的抛物线的解析式;
(2)设点M是x轴上的动点,试问:在平面直角坐标系中,是否存在点N,使得以点A,B,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,说明理由;
(3)若抛物线对称轴交x轴于点P,在平面直角坐标系中,是否存在点Q,使△PAQ是以PA为腰的等腰直角三角形?若存在,写出所有符合条件的点Q的坐标,选择一种情况加以说明;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y1=mx2+4mx﹣5m(m≠0),一次函数y2=2x﹣2,有下列结论:
①当x>﹣2时,y随x的增大而减小;
②二次函数y1=mx2+4mx﹣5m(m≠0)的图象与x轴交点的坐标为(﹣5,0)和(1,0);
③当m=1时,y1≤y2;
④在实数范围内,对于x的同一个值,这两个函数所对应的函数值y2≤y1均成立,则m.
其中,正确结论的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为分别是边上的动点,和交于点.
如图(1),若为边的中点,, 求的长;
如图(2),若点在上从向运动,点在.上从向运动.两点同时出发,同时到达各自终点,求在运动过程中,点运动的路径长:
如图(3), 若分别是边上的中点,与交于点,求的正切值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线上有两点,,连接,,,直线交轴于点,点到两坐标轴的距离相等.点到两坐标轴的距离也相等.
(1)求点,的坐标并直接写出的形状;
(2)若点为线段上的一个动点(不与点,重合),连接,当为等腰三角形时,求点的坐标;
(3)若点为轴上一动点,当是以为斜边的直角三角形时,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com