A. | ②④ | B. | ③④ | C. | ②③④ | D. | ①②③④ |
分析 求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等边三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根据以上结论推出即可.
解答 解:∵∠AFC=135°,CF与AH不垂直,
∴点F不是AH的中点,即AF≠FH,
∴①错误;
∵四边形ABCD是矩形,
∴∠BAD=90°,
∵AD=$\sqrt{3}$,AB=1,
∴tan∠ADB=$\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$,
∴∠ADB=30°,
∴∠ABO=60°,
∵四边形ABCD是矩形,
∴AD∥BC,AC=BD,AC=2AO,BD=2BO,
∴AO=BO,
∴△ABO是等边三角形,
∴AB=BO,∠AOB=∠BAO=60°=∠COE,
∵AF平分∠BAD,
∴∠BAF=∠DAF=45°,
∵AD∥BC,
∴∠DAF=∠AFB,
∴∠BAF=∠AFB,
∴AB=BF,
∵AB=BO,
∴BF=BO,∴②正确;
∵∠BAO=60°,∠BAF=45°,
∴∠CAH=15°,
∵CE⊥BD,
∴∠CEO=90°,
∵∠EOC=60°,
∴∠ECO=30°,
∴∠H=∠ECO-∠CAH=30°-15°=15°=∠CAH,
∴AC=CH,
∴③正确;
∵△AOB是等边三角形,
∴AO=OB=AB,
∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AB=CD,
∴DC=OC=OD,
∵CE⊥BD,
∴DE=EO=$\frac{1}{2}$DO=$\frac{1}{4}$BD,
即BE=3ED,∴④正确;
故选C.
点评 本题考查了矩形的性质,平行线的性质,角平分线定义,定义三角形的性质和判定,等边三角形的性质和判定等知识点的综合运用,难度偏大,对学生提出较高的要求.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4π-8 | B. | 6π-8 | C. | 8π-8 | D. | 10π-8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2000米 | B. | 3000米 | C. | 4000米 | D. | 5000米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com