精英家教网 > 初中数学 > 题目详情

【题目】某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为x(0<x<0.5).

项目

第一次锻炼

第二次锻炼

步数(步)

10000

平均步长(米/步)

0.6

距离(米)

6000

7020

注:步数×平均步长=距离.
(1)根据题意完成表格填空;
(2)求x;
(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.

【答案】
(1)10000(1+3x)|0.6(1﹣x)
(2)解:由题意:10000(1+3x)×0.6(1﹣x)=7020

解得:x1= >0.5(舍去),x2=0.1.

则x=0.1,

答:x的值为0.1


(3)解:根据题意可得:10000+10000(1+0.1×3)=23000,

500÷(24000﹣23000)=0.5(m).

答:王老师这500米的平均步幅为0.5米


【解析】解:(1)①根据题意可得:10000(1+3x);②第二次锻炼的平均步长(米/步)为:0.6(1﹣x);

所以答案是:10000(1+3x);0.6(1﹣x);

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形网格MNPQ中,每个小方格的边长都相等,正方形ABCD的顶点在正方形MNPQ4条边的小方格顶点上.

(1)设正方形MNPQ网格内的每个小方格的边长为1,求:

①△ABQBCMCDNADP的面积;

②正方形ABCD的面积.

(2)MBaBQb,利用这个图形中的直角三角形和正方形的面积关系,你能验证已学过的哪一个数学公式或定理吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是4,点EBC的中点,连接DEDFDEBA的延长线于点F.连接EFACDEEF分别与C交于点PQ,则PQ_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直三棱柱ABC-A1B1C1的侧棱长和底面各边长均为2,其主视图是边长为2的正方形,则此直三棱柱左视图的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.
(1)如图①,若∠BAC=23°,求∠AMB的大小;
(2)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作与思考:一张边长为a的正方形桌面,因为实际需要,需将正方形边长增加b,从而得到一个更大的正方形,木工师傅设计了如图所示的方案:

1)方案中大正方形的边长都是   ,所以面积为   

2)小明还发现:方案中大正方形的面积还可以用四块小四边形的面积和来表示   

3)你有什么发现,请用数学式子表达   

4)利用(3)的结论计算20.182+2×20.18×19.82+19.822的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,AC=BC,点EAC上一点,连接BE

(1)若CB=4,BE=5,求AE的长;

(2)如图2,点D是线段BE延长线上一点,过点AAFBD于点F,连接CD、CF,当AF=DF时,求证:DC=BC

小洁在遇到此问题时不知道怎么下手,秦老师提示他可以过点CCHCF,交DB于点H,先证明△AFCBHC,然后继续思考,并鼓励小洁把证明过程写出来.请你帮助小洁完成这个问题的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求证:△BCE≌△DCF;

(2)求证:AB+AD=2AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,BD为⊙O直径,弦AD长为3,AB长为5,AC平分∠DAB,则弦AC的长为

查看答案和解析>>

同步练习册答案