精英家教网 > 初中数学 > 题目详情
10.如图,过矩形ABCD的顶点B作BE∥AC,垂足为E,延长BE交AD于F,若点F是边AD的中点,则sin∠ACD的值是$\frac{\sqrt{6}}{3}$.

分析 由矩形的性质得出AD∥BC,AD=BC,∠D=90°,证出△AEF∽△CEB,得出对应边成比例 $\frac{AE}{CE}=\frac{AF}{BC}$=$\frac{1}{2}$,设AF=DF=a,AE=x,则CE=2x,AC=3x,再证明△AEF∽△ADC,得出 $\frac{AF}{AC}=\frac{AE}{AD}$,得出x=$\frac{\sqrt{6}a}{3}$,AC=$\sqrt{6}$a,再由三角函数的定义即可得出结果.

解答 解:∵点F是边AD的中点,
∴AF=DF=$\frac{1}{2}$AD,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC,∠D=90°,
∴AF=$\frac{1}{2}$BC,△AEF∽△CEB,
∴$\frac{AE}{CE}=\frac{AF}{BC}$=$\frac{1}{2}$,
设AF=DF=a,AE=x,则CE=2x,AC=3x,
∵BF⊥AC,
∴∠AEF=∠D=90°,
∵∠EAF=∠DAC,
∴△AEF∽△ADC,
∴$\frac{AF}{AC}=\frac{AE}{AD}$,
即 $\frac{a}{3x}=\frac{x}{2a}$,
解得:x=$\frac{\sqrt{6}a}{3}$,
∴AC=$\sqrt{6}$a,
∴sin∠ACD=$\frac{2a}{\sqrt{6}a}$=$\frac{\sqrt{6}}{3}$,
故答案为:$\frac{\sqrt{6}}{3}$.

点评 本题考查了矩形的性质、相似三角形的判定与性质、三角函数;熟练掌握矩形的性质,证明三角形相似是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.(1)如图①,在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF分别交AD、BC于点E、F,求证:OE=OF.
(2)在图①中,过点O作直线GH分别交AB、CD于点G、H,且满足GH⊥EF,连结EG、GF、FH、HE.如图②,试判断四边形EGFH的形状,并说明理由;
(3)在(2)的条件下,
若平行四边形ABCD变为矩形时,四边形EGFH是菱形;
若平行四边形ABCD变为菱形时,四边形EGFH是菱形;
若平行四边形ABCD变为正方形时,四边形EGFH是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.(1)解不等式组$\left\{\begin{array}{l}{x+3>0}\\{2(x-1)+3≥3x}\end{array}\right.$,并判断x=$\sqrt{3}$是否为该不等式组的解.
(2)先化简,再求值:($\frac{1}{a+1}$+1)÷$\frac{{a}^{2}-4}{a+1}$,其中a=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程组:$\left\{\begin{array}{l}{x=3+y}\\{3x-2y=5}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinA的值是(  )
A.$\frac{2}{3}$B.$\frac{3}{5}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知反比例函数y=-$\frac{3m}{x}$的图象和一次函数y=kx-1的图象都经过点P(m,-3m).
(1)求点P的坐标和这个一次函数的表达式;
(2)若这两个图象的另一个交点Q纵坐标为2,O为坐标原点,求△POQ的面积;
(3)若点M(a,y1)和点N(a+1,y2)都在这个反比例函数的图象上,比较y1和y2的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,三角形ABC沿x轴正方向平移2个单位长度,再沿y轴负方向平移1个单位长度得到三角形EFG.
(1)写出三角形EFG的三个顶点坐标;
(2)求三角形EFG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示运动时间(0≤t≤6),那么当t为何值时,△APQ与△ABD相似?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.
(1)画出△ABC关于直线OM对称的△A1B1C1
(2)画出△ABC关于点O的中心对称图形△A2B2C2
(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形是(填“是”或“不是”)轴对称图形.

查看答案和解析>>

同步练习册答案