【题目】如图,在矩形中,,,点为边上的一个动点、过点作交边于点,把线段绕点旋转至(点与点对应),点落在线段上,若恰好平分,则的长为_________.
【答案】4
【解析】
由PQ∥AC,可得△BPQ∽△BCA,得到BP:BQ=BC:BA=3:4,设BP=3x,则BQ=4x,PQ=5x,PE=PB=3x,又AE恰好平分∠BAC,由此得到∠QAE=∠EAC=∠AEQ,进而得到△QAE是等腰三角形,QE=AQ=2x,进而得到AB=AQ+QB=6x=8,解出x的值即可求解.
解:如下图:
∵PQ∥AC,∴∠QPB=∠ACB,且∠B为公共角
∴△BPQ∽△BCA
∴,设BP=3x,则BQ=4x,PQ=5x,PE=PB=3x
∵AE恰好平分∠BAC,
∴∠QAE=∠EAC
又PQ∥AC
∴∠EAC=∠AEQ
∴∠QAE=∠AEQ
∴△AQE为等腰三角形,且AQ=QE=2x
∴AB=AQ+BQ=2x+4x=6x,又AB=8
∴6x=8,
∴BP=3x=4.
故答案为:4.
科目:初中数学 来源: 题型:
【题目】如图,边长为2的等边△ABC和边长为1的等边△A′B′C′,它们的边B′C′,BC位于同一条直线l上,开始时,点C′与B重合,△ABC固定不动,然后把△A′B′C′自左向右沿直线l平移,移出△ABC外(点B′与C重合)停止,设△A′B′C′平移的距离为x,两个三角形重合部分的面积为y,则y关于x的函数图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近年来,共享单车服务的推出(如图1),极大的方便了城市公民绿色出行,图2是某品牌某型号单车的车架新投放时的示意图(车轮半径约为30cm),其中BC∥直线l,∠BCE=71°,CE=54cm.
(1)求单车车座E到地面的高度;(结果精确到1cm)
(2)根据经验,当车座E到CB的距离调整至等于人体胯高(腿长)的0.85时,坐骑比较舒适.小明的胯高为70cm,现将车座E调整至座椅舒适高度位置E′,求EE′的长.(结果精确到0.1cm)
(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】老王面前有两个容积相同的杯子,杯子甲他装了三分之一的葡萄酒,杯子乙他装了半杯的王老吉凉茶,老张过来将装有凉茶的杯子乙倒满了酒,老王又将杯子乙中饮料倒一部分到杯子甲,使得两个杯子的饮料分量相同.然后老王让老张先选一杯一起喝了,如果老张不想多喝酒,那么他应该选择( )
A.甲杯B.乙杯C.甲、乙是一样的D.无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,于,且.点从点出发,沿方向匀速运动,速度为;同时直线由点出发沿方向匀速运动,速度为,运动过程中始终保持,直线交于,交于,连接,设运动时间为.
(1)___________,__________,_____________;(用含的式子表示)
(2)当四边形是平行四边形时,求的值;
(3)当点在线段的垂直平分线上时,求的值;
(4)是否存在时刻,使以为直径的圆与的边相切?若存在,直接写出的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在中,点为的中点.
问题发现
如图①,若点分别是的中点,连接则线段与的数量关系是 ___ _,线段与的位置关系是 ___ _;
拓展探究
如图②,若点分别是上的点,且连接上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;
解决问题
当点分别为延长线上的点,且连接直接写出的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有______名;
(2)补全条形统计图,并计算阅读部分圆心角是______度;
(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a米/秒的速度匀速跑,一段时间后提高速度,以米/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学所的路程为s(米),乙同学所用的时间为t(秒),s与t之间的函数图象如图所示.
(1)乙同学起跑的速度为______米/秒;
(2)求a、b的值;
(3)当乙同学领先甲同学60米时,直接写出t的值是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com